LZH am Forschungsschwerpunkt „Hybride Numerische Optik“ beteiligt

Gegenüberstellung einer amorphen und einer kristallinen Titandioxid-Struktur. Skizze: LZH

Das LZH arbeitet in dem neuen Kompetenzzentrum für optische Simulation an drei Teilprojekten zu den Themen Hochleistungs-Glasfaserverstärker, dielektrische Schichten und Lichtleitung in Fluidsäulen.

Höchste Laserleistungen

Im Teilprojekt „Dynamische Lichtpropagation in Hochleistungs-Glasfaserverstärkern“ arbeiten die Wissenschaftler/-innen in den kommenden drei Jahren daran, die Laserleistungen von kontinuierlich emittierenden und gepulsten Systemen zu erhöhen. Hierzu steht die Untersuchung leistungsabhängiger Effekte in optischen Fasern im Mittelpunkt.

Zurzeit wird die maximal nutzbare Ausgangsleistung von Hochleistungs­faser­systemen durch sogenannte transversale Modeninstabilitäten (TMI) begrenzt. Dabei beginnt das Strahlprofil des Lasers oberhalb einer Leistungsschwelle plötzlich zu fluktuieren.

Die Abteilung Laserentwicklung des LZH will durch ein Simulationsmodell die Interaktionen und Prozesse in den Faserverstärkern genauer untersuchen und dadurch TMI besser verstehen. Als weiteres spitzenleistungsabhängiges Phänomen soll auch die Auswirkung der Kerr-Nichtlinearität auf die Pulspropagation in Faserschmelzkopplern untersucht werden.

Beschichtungen verbessern

Im Teilprojekt „Strukturelle und optische Eigenschaften dielektrischer Schichten“ werden in der Abteilung Laserkomponenten unterschiedliche Simulationstechniken kombiniert, um Beschichtungsprozesse zu optimieren.

Dabei wollen die Wissenschaftler/-innen verstehen, wie die Schichteigenschaften und das Zerstörverhalten von den Beschichtungsparametern beeinflusst werden. Dazu kombinieren sie ein klassisches Wachstumsmodell mit quantenmechanischen Simulationstechniken. So können sie sowohl die strukturellen als auch optischen und elektronischen Eigenschaften der gewachsenen Schichtstrukturen bestimmen.

Flüssigkeitsgeführte Laserstrahlen

Im Teilprojekt „Simulation der Lichtleiteigenschaften in koaxial strömenden Fluidpaaren mittels wellenoptischer Lichtpropagation in fluiddynamisch und thermisch aufgeprägten Brechungsindexverteilungen“ soll die Strahlführung in strömenden Flüssigkeiten simuliert werden. Die Wissenschaftler/-innen der Abteilung Produktions- und Systemtechnik wollen dazu die Lichtausbreitung in flüssigen oder gasförmigen Lichtwellenleitern mit einem hybriden Ansatz vorhersagen.

Dazu simulieren sie zum einen eine strömende Fluidsäule am Beispiel eines Zwei-Fluid-Systems. Zum anderen untersuchen sie die Ausbreitung des Lichts in dieser Fluidsäule. Die Verknüpfung dieser beiden Methoden steht dabei im Vordergrund des Teilprojekts. Anwendung finden kann der flüssigkeitsgeführte Laserstrahl beispielsweise in der Lasermaterialbearbeitung.

Media Contact

Dr. Nadine Tinne Laser Zentrum Hannover e.V.

Weitere Informationen:

http://www.lzh.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer