Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lufthülle lässt Schiffe leichter durchs Wasser gleiten

02.05.2018

Eine Luftbeschichtung, die den Reibungswiderstand von Schiffen reduziert, entwickeln Forscher aus ganz Europa im Projekt AIRCOAT. Dabei nutzen sie den am Karlsruher Institut für Technologie (KIT) erforschten Salvinia-Effekt, der es erlaubt, unter Wasser eine Luftschicht dauerhaft zu halten. Die Europäische Kommission fördert AIRCOAT mit insgesamt 5,3 Millionen Euro; davon erhält das KIT rund eine Million Euro. Die wissenschaftliche Koordination liegt bei dem Physiker und Nanotechnologie-Experten Professor Thomas Schimmel am KIT.

Das Projekt ist am 1. Mai 2018 gestartet und läuft drei Jahre. Als Projektkoordinator fungiert das Fraunhofer-Center für Maritime Logistik und Dienstleistungen CML in Hamburg. AIRCOAT (Air Induced friction Reducing ship COATing) zielt darauf, eine passive Luftschmiertechnologie für Schiffe zu entwickeln, die zum Schutz der Meere und der Atmosphäre beiträgt.


Die extrem wasserabweisende Oberfläche der Schwimmfarne (Salvinia) dient als Vorbild für die AIRCOAT Technologie.

Abbildung: Arbeitsgruppe Prof. Schimmel, KIT

Eine auf den Schiffsrumpf aufgebrachte selbstklebende Folie erzeugt eine dünne Lufthülle, die den Reibungswiderstand wesentlich verringert und gleichzeitig als physikalische Barriere zwischen Rumpfoberfläche und Wasser wirkt. Dadurch lassen sich Kraftstoffverbrauch und Abgasausstoß des Schiffs beträchtlich reduzieren.

Die Luftschicht vermindert auch die Abstrahlung von Schiffslärm. Überdies verhindert sie die Ansiedlung von Meeresorganismen am Schiffsrumpf, das sogenannte Fouling, sowie die Freisetzung von bioziden Substanzen aus darunterliegenden Beschichtungen ins Wasser.

Bei der innovativen Luftbeschichtung handelt es sich um eine bionische Anwendung – die Technik ist von der Natur abgeschaut. AIRCOAT basiert auf dem Salvinia-Effekt, den der Botaniker Professor Wilhelm Barthlott von der Universität Bonn und der Physiker Professor Thomas Schimmel vom KIT gemeinsam entdeckt haben.

Dieser Effekt ermöglicht es bestimmten Pflanzen wie den Schwimmfarnen (Salvinia) auch unter Wasser zu atmen. Dazu halten sie eine dünne Luftschicht auf der Oberfläche ihrer Blätter, die haarartige Strukturen aufweist und extrem wasserabweisend ist. Das AIRCOAT Projekt setzt diesen Effekt, der die Haltung von Luftschichten auf Oberflächen unter Wasser ermöglicht, nun technologisch auf einem selbstklebenden Foliensystem um.

Der wissenschaftliche Koordinator von AIRCOAT, Professor Thomas Schimmel, der am Institut für Angewandte Physik (APH), am Institut für Nanotechnologie (INT) sowie am Centrum für Funktionelle Nanostrukturen (CFN) des KIT tätig ist, erforschte mit seiner Arbeitsgruppe den Salvinia-Effekt in dem von Bundesforschungsministerium geförderten Projekt ARES, an dem das KIT sowie die Universitäten Bonn und Rostock beteiligt waren, sowie in einem von der Baden-Württemberg Stiftung geförderten Projekt.

„Nachdem wir den Salvinia-Effekt verstanden hatten, erkannten wir das enorme ökonomische und ökologische Potenzial einer technischen Umsetzung“, berichtet Thomas Schimmel. „Wir entwickelten eine Methode zur Herstellung einer künstlichen Oberfläche, die den Effekt im Labor nachahmt. Ein früher Prototyp, den wir vor mehr als fünf Jahren unter Wasser gesetzt haben, ist immer noch mit einer dauerhaften Luftschicht bedeckt!“

Das AIRCOAT Konsortium optimiert die neue Technologie und untersucht die Oberflächeneigenschaften experimentell und numerisch. Anschließend demonstrieren die Forscher die Effizienz und die industrielle Machbarkeit im Labor, auf Forschungsschiffen und auf Containerschiffen. Ein umfassender Validierungsprozess wird den Nutzen für Wirtschaft und Umwelt nachweisen.

In AIRCOAT arbeiten Wissenschaftler aus verschiedenen Disziplinen – von der angewandten Physik über Nanotechnologie, experimentelle und numerische Strömungsmechanik sowie Bionik bis hin zu Schiffstechnik und Schiffsemissionsmodellierung – mit Industrieexperten aus den Bereichen Schiffsbeschichtung, Ökotoxikologie und Selbstklebefolientechnologie sowie Containerschiffsbetreibern zusammen.

Insgesamt sind an dem von der Europäischen Kommission im Rahmen des Programms Horizon 2020 geförderten Projekt zehn Partner beteiligt: neben dem Fraunhofer CML und dem KIT auch die Hochschule Bremen und die HSVA Hamburgische Schiffbau-Versuchsanstalt GmbH sowie Avery Dennison Materials Belgium, PPG Coatings Europe B.V. (Niederlande), Danaos Shipping (Zypern), die AquaBioTech Gruppe (Malta), das Finnische Meteorologische Institut und Revolve Water (Belgien).

Weiterer Pressekontakt:
Regina Link, Redakteurin/Pressereferentin, Tel.: 0721 608-21158, E-Mail: regina.link@kit.edu

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 300 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 25 500 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen.

Diese Presseinformation ist im Internet abrufbar unter: http://www.sek.kit.edu/presse.php

Monika Landgraf | Karlsruher Institut für Technologie
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe
11.12.2018 | Technische Universität Wien

nachricht Neue Methode verpasst Mikroskop einen Auflösungsschub
10.12.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

Von „Frequenzkämmen“ spricht man bei speziellem Laserlicht, das sich optimal für chemische Sensoren eignet. Eine revolutionäre Technik der TU Wien erzeugt dieses Licht nun viel einfacher und robuster als bisher.

Ein gewöhnlicher Laser hat genau eine Farbe. Alle Photonen, die er abstrahlt, haben genau dieselbe Wellenlänge. Es gibt allerdings auch Laser, deren Licht...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Neue Methode verpasst Mikroskop einen Auflösungsschub

Verspiegelte Objektträger ermöglichen jetzt deutlich schärfere Bilder / 20fach bessere Auflösung als ein gewöhnliches Lichtmikroskop - Zwei Forschungsteams der Universität Würzburg haben dem Hochleistungs-Lichtmikroskop einen Auflösungsschub verpasst. Dazu bedampften sie den Glasträger, auf dem das beobachtete Objekt liegt, mit maßgeschneiderten biokompatiblen Nanoschichten, die einen „Spiegeleffekt“ bewirken. Mit dieser einfachen Methode konnten sie die Bildauflösung signifikant erhöhen und einzelne Molekülkomplexe auflösen, die sich mit einem normalen Lichtmikroskop nicht abbilden lassen. Die Studie wurde in der NATURE Zeitschrift „Light: Science and Applications“ veröffentlicht.

Die Schärfe von Lichtmikroskopen ist aus physikalischen Gründen begrenzt: Strukturen, die näher beieinander liegen als 0,2 tausendstel Millimeter, verschwimmen...

Im Focus: Supercomputer ohne Abwärme

Konstanzer Physiker eröffnen die Möglichkeit, Supraleiter zur Informationsübertragung einzusetzen

Konventionell betrachtet sind Magnetismus und der widerstandsfreie Fluss elektrischen Stroms („Supraleitung“) konkurrierende Phänomene, die nicht zusammen in...

Im Focus: Drei Nervenzellen reichen, um eine Fliege zu steuern

Uns wirft so schnell nichts um. Eine Fruchtfliege kann dagegen schon ein kleiner Windstoß vom Kurs abbringen. Drei große Nervenzellen in jeder Hälfte des Fliegenhirns reichen jedoch aus, um die Fliege mit Hilfe visueller Signale wieder auf Kurs zu bringen.

Bewegen wir uns vorwärts, zieht die Umwelt in die entgegengesetzte Richtung an unseren Augen vorbei. Drehen wir uns, verschiebt sich das Bild der Umwelt im...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungen

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungen

Fachforum über intelligente Datenanalyse

10.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

11.12.2018 | Physik Astronomie

Besser Bohren – Neues Nanokomposit stabilisiert Bohrflüssigkeiten

11.12.2018 | Geowissenschaften

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics