Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lasertrick liefert energiereiche Terahertz-Blitze

13.06.2019

Auf dem Weg zu neuartigen, kompakten Teilchenbeschleunigern hat ein Forscherteam von DESY und der Universität Hamburg einen wichtigen Meilenstein erreicht: Mit ultrastarken Laserpulsen ist es den Wissenschaftlerinnen und Wissenschaftlern gelungen, besonders energiereiche Blitze im Terahertz-Bereich zu erzeugen, die eine scharf definierte Wellenlänge besitzen. Terahertz-Strahlung soll eine neue Generation von Teilchenbeschleunigern ermöglichen, die auf einen Labortisch passen.

Das Team um Andreas Maier und Franz Kärtner vom Hamburger Center for Free-Electron Laser Science (CFEL) präsentiert seine Ergebnisse im Fachblatt „Nature Communications“. CFEL ist eine gemeinsame Einrichtung von DESY, Universität Hamburg und der Max-Planck-Gesellschaft.


Aus der Farbdifferenz zweier zeitlich leicht versetzter Laserblitze (links) erzeugt der Spezialkristall einen energiereichen Terahertz-Puls (rechts).

Bild: DESY, Lucid Berlin

Die Erzeugung energiereicher Terahertz-Pulse ist auch ein wichtiger Schritt für das vom Europäischen Forschungsrat ERC geförderte Projekt AXSIS (frontiers in Attosecond X-ray Science: Imaging and Spectroscopy) am CFEL, das mit kompakten Terahertz-Teilchenbeschleunigern ganz neue Anwendungen ermöglichen will.

Der Terahertz-Bereich der elektromagnetischen Strahlung liegt zwischen Infrarotlicht und Mikrowellen. Flugreisenden ist Terahertz-Strahlung oft aus den Ganzkörperscannern an der Sicherheitskontrolle bekannt, mit denen sich nach versteckten Gegenständen unter der Kleidung suchen lässt.

Strahlung in diesem Wellenlängenbereich eignet sich jedoch auch für den Bau kompakter Teilchenbeschleuniger. „Die Wellenlänge von Terahertz-Strahlung ist rund tausendmal kürzer als die heute zur Beschleunigung verwendeten Radiowellen“, sagt Kärtner, der Leitender Wissenschaftler bei DESY ist. „Daher lassen sich auch die Beschleunigerkomponenten rund tausendmal kleiner bauen.“

Um eine nennenswerte Zahl von Teilchen auf Trab zu bringen sind starke Terahertz-Pulse mit möglichst scharf definierter Wellenlänge nötig. Genau die hat das Team nun produziert. „Um Terahertz-Pulse zu generieren, schießen wir zwei starke Laserblitze zeitlich minimal versetzt in einen sogenannten nichtlinearen Kristall“, erläutert Maier von der Universität Hamburg.

Die beiden Laserblitze haben eine Art Farbverlauf, das heißt, sie haben vorne eine andere Farbe als hinten. Durch den leichten zeitlichen Versatz besteht zwischen den Pulsen eine leichte Farbdifferenz. „Diese Differenz liegt genau im Terahertz-Bereich“, sagt Maier. „Der Kristall wandelt die Farbdifferenz in einen Terahertz-Puls um.“

Die beiden Laserblitze müssen für diese Methode exakt zeitlich synchronisiert sein. Das erreichen die Forscherinnen und Forscher, indem sie einen Laserblitz in zwei Teile aufspalten, dann einen der beiden Pulse über einen kurzen Umweg schicken, so dass er leicht verzögert ist, und schließlich beide Pulse wieder überlagern.

Allerdings ist der Farbverlauf der Pulse nicht einfach konstant, die Farbe ändert sich also nicht gleichmäßig entlang des Pulsprofils. Stattdessen ist der Farbwechsel zunächst gering und wird dann immer stärker, hat also kein gerades, sondern ein gebogenes Farbprofil. Die beiden leicht versetzt fliegenden Pulse haben dadurch keine konstante Farbdifferenz. Nur in einem schmalen Abschnitt stimmt deshalb die Differenz für die Erzeugung von Terahertz-Strahlung.

„Das war eine große Hürde für die Erzeugung energiereicherer Terahertz-Pulse“, berichtet Maier. „Denn den Farbverlauf der Pulse zu begradigen, was die naheliegende Lösung gewesen wäre, ist technisch nicht einfach umsetzbar.“ Den entscheidenden Einfall hatte dann Ko-Autor Nicholas Matlis: Er schlug vor, das Farbprofil nur eines der beiden Teilpulse zeitlich leicht zu strecken. Dadurch ändert sich zwar immer noch die Stärke des Farbverlaufs entlang des Pulses, die Farbdifferenz zum anderen Teilpuls verbessert sich jedoch und bleibt über einen weiten Bereich konstant.

„Die erforderlichen Änderungen an einem der Pulse sind minimal und verblüffend einfach umzusetzen: Es war ausreichend, ein kurzes Stück Spezialglas in den Strahlengang einzusetzen“, berichtet Maier. „Auf einmal war das Terahertz-Signal um den Faktor 13 stärker.“ Zusätzlich haben die Wissenschaftlerinnen und Wissenschaftler einen besonders großen nichtlinearen Kristall zur Erzeugung der Terahertz-Strahlung verwendet, eine Spezialanfertigung des japanischen Instituts für Molekularwissenschaften in Okazaki. Je größer der Kristall, desto energiereichere Terahertz-Pulse lassen sich erzeugen.

„In der Kombination dieser beiden Maßnahmen haben wir eine Terahertz-Pulsenergie von 0,6 Millijoule erreicht, das ist Rekord für diese Technik und über zehnmal stärker als alle zuvor auf optischem Weg generierten Terahertz-Pulse mit scharf definierter Wellenlänge“, berichtet Kärtner. „Unsere Arbeit zeigt, dass es möglich ist, ausreichend starke Terahertz-Pulse mit scharf definierter Wellenlänge für den Betrieb kompakter Teilchenbeschleuniger zu erzeugen.“

DESY zählt zu den weltweit führenden Teilchenbeschleuniger-Zentren und erforscht die Struktur und Funktion von Materie – vom Wechselspiel kleinster Elementarteilchen, dem Verhalten neuartiger Nanowerkstoffe und lebenswichtiger Biomoleküle bis hin zu den großen Rätseln des Universums. Die Teilchenbeschleuniger und die Nachweisinstrumente, die DESY an seinen Standorten in Hamburg und Zeuthen entwickelt und baut, sind einzigartige Werkzeuge für die Forschung: Sie erzeugen das stärkste Röntgenlicht der Welt, bringen Teilchen auf Rekordenergien und öffnen neue Fenster ins Universum. DESY ist Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands, und wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert.

Wissenschaftliche Ansprechpartner:

Dr. Andreas R. Maier
Universität Hamburg
+49 40 8998-6687
andreas.maier@desy.de

Prof. Franz X. Kärtner
DESY
+49 40 8998-6350
franz.kaertner@desy.de

Originalpublikation:

Spectral Phase Control of Interfering Chirped Pulses for High-Energy Narrowband Terahertz Generation; Spencer W. Jolly, Nicholas H. Matlis, Frederike Ahr, Vincent Leroux, Timo Eichner, Anne-Laure Calendron, Hideki Ishizuki, Takunori Taira, Franz X. Kärtner, and Andreas R. Maier; „Nature Communications“, 2019; DOI: https://dx.doi.org/10.1038/s41467-019-10657-4

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.desy.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wie verformen sich Rotorblätter bei Windböen?
17.02.2020 | Jade Hochschule - Wilhelmshaven/Oldenburg/Elsfleth

nachricht ESO-Teleskop sieht die Oberfläche des schwächelnden Beteigeuze
14.02.2020 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: Nanopartikel können Zellen verändern

Nanopartikel dringen leicht in Zellen ein. Wie sie sich dort verteilen und was sie bewirken, zeigen nun erstmals hochaufgelöste 3D-Mikroskopie-Aufnahmen an BESSY II. So reichern sich bestimmte Nanopartikel bevorzugt in bestimmten Organellen der Zelle an. Dadurch kann der Energieumsatz in der Zelle steigen. „Die Zelle sieht aus wie nach einem Marathonlauf, offensichtlich kostet es Energie, solche Nanopartikel aufzunehmen“, sagt Hauptautor James McNally.

Nanopartikel sind heute nicht nur in Kosmetikprodukten, sondern überall, in der Luft, im Wasser, im Boden und in der Nahrung. Weil sie so winzig sind, dringen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Flexibles Fügen und wandlungsfähige Prozessketten: der Schlüssel für effiziente Produktion

17.02.2020 | Interdisziplinäre Forschung

AgiloBat: Batteriezellen flexibel produzieren

17.02.2020 | Energie und Elektrotechnik

Nierenkrebs an der Wurzel packen

17.02.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics