Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserpulse helfen Forschern, komplexe Elektronenwechselwirkungen zu entflechten

20.12.2016

Zeitaufgelöste „Stop-Motion“-Aufnahmen und anspruchsvolle theoretische Simulationen enthüllen eine ungewöhnliche Form von Energieverlust

Die Eigenschaften komplexer Quanten-Materialien zu verstehen, ist eines der bedeutendsten Ziele der Physik kondensierter Materie und der Materialwissenschaften, da Effekte wie Hochtemperatursupraleitung zu einer Vielzahl von Anwendungen führen könnten.


Ein Laserpuls regt ein Material an; ein zweiter Puls schießt Elektronen heraus, die zum Detektor fliegen. Diese Bilder erlauben es Forschern, fundamentale Wechselwirkungen in Festkörpern zu verstehen.

© Brian Moritz / SLAC

Nun hat ein internationales Team von Wissenschaftlern, zu dem auch Emmy Noether-Gruppenleiter Michael Sentef vom Max-Planck-Institut für Struktur und Dynamik der Materie am CFEL in Hamburg gehört, eine neue lasergetriebene „Stop-Motion“-Methode für die Untersuchung komplexer Elektronenwechselwirkungen unter dynamischen Bedingungen vorgestellt. Es wird erwartet, dass die Erkenntnisse, welche heute in der Fachzeitschrift Nature Communications veröffentlicht wurden, das Verständnis der physikalischen Prozesse verbessern, die zu emergenten Phänomenen in stark korrelierten Materialien führen.

Wissenschaftler, die Hochtemperatursupraleiter erforschen – Materialien, die elektrischen Strom bei Kühlung unter eine bestimmte Temperatur ohne Energieverlust transportieren – sind seit jeher auf der Suche nach Wegen, um die Elektronenwechselwirkungen, welche für diese vielversprechende Eigenschaft verantwortlich gemacht werden, detailliert zu untersuchen. Eine große Herausforderung liegt darin, die vielen unterschiedlichen Wechselwirkungen zu entwirren – also beispielsweise die Effekte der Wechselwirkung der Elektronen untereinander von den Effekten ihrer Wechselwirkungen mit den Atomen im Material zu trennen.

In der aktuellen Studie verwendeten die Forscher einen sehr schnellen, intensiven „Pump“-Laser, um Elektronen einen Energiestoß zu geben, und einen zweiten „Probe“-Laser, um das Energieniveau der Elektronen und ihre Bewegungsrichtung zu vermessen während sie in ihren Ausgangszustand zurückkehren. „Durch Variation der Zeit zwischen dem Pump- und dem Probe-Laser können wir eine stroboskopische Aufnahme des Geschehens erstellen – einen Film des Materials vom Ruhezustand über die heftige Wechselwirkung bis hin zur Rückkehr in den Ausgangszustand“, sagte Jonathan Rameau, Physiker am Brookhaven National Laboratory und einer der Hauptautoren der Arbeit. „Es ist als ließe man eine Bowlingkugel in einen Wassereimer fallen, um eine große Störung zu erzeugen, und machte zu verschiedenen Zeiten danach Aufnahmen“, erklärte er.

Diese Methode, bekannt als zeit- und winkelaufgelöste Photoelektronenspektroskopie (time-resolved, angle-resolved photoelectron spectroscopy, tr-ARPES), in Kombination mit komplexen theoretischen Simulationen und Analyse, erlaubte es dem Team, die Reihenfolge und die energetischen Signaturen verschiedener Arten von Elektronenwechselwirkungen herauszufiltern. So gelang es ihnen, eindeutige Signale von Wechselwirkungen zwischen angeregten Elektronen (welche sich schnell abspielen, aber nicht viel Energie zerstreuen) sowie später stattfindenden zufälligen Wechselwirkungen zwischen Elektronen und den Atomen des Kristallgitters (welche Reibung erzeugen und zu schrittweisem Energieverlust in Form von Wärme führen) zu selektieren.

Aber sie entdeckten auch ein anderes, unerwartetes Signal – das ihrer Aussage nach eine neue Form extrem effizienten Energieverlustes darstellt – bei einem bestimmten Energieniveau und einer Zeitskala zwischen den anderen beiden.

„Wir sehen eine sehr starke und besondere Wechselwirkung zwischen den angeregten Elektronen und dem Gitter, bei der die Elektronen einen Großteil ihrer Energie sehr schnell auf kohärente, nichtzufällige Weise verlieren“, sagte Rameau. Bei diesem speziellen Energieniveau scheinen die Elektronen alle mit den Gitteratomen bei einer bestimmten Frequenz zu wechselwirken – wie eine Stimmgabel, die auf ihrer Resonanz einen Ton spielt. Wenn alle Elektronen, welche die richtige Energie für diese spezielle Wechselwirkung besitzen, den Großteil ihrer Anregungsenergie abgegeben haben, beginnen sie langsamer zu kühlen, und zwar mittels zufälligerer Prozesse, die nicht die Resonanzfrequenz benötigen. Die Resonanzfrequenz dieses Prozesses ist besonders bemerkenswert, da sie mit der Energie eines „Knickes“ in der Energiedispersion desselben Materials übereinstimmt, der zuvor in seinem supraleitenden Zustand mittels einer statischen Form von ARPES gefunden worden war.

Zu jener Zeit vermuteten die Wissenschaftler, dass der Knick etwas mit der Supraleitung des Materials zu tun haben könnte. Dasselbe Signal wurde oberhalb der kritischen Sprungtemperatur für Supraleitung nicht eindeutig nachgewiesen. Die neuen Experimente jedoch, die deutlich oberhalb der supraleitenden Temperatur durchgeführt wurden, konnten das subtile Signal herauskitzeln. Diese neuen Ergebnisse legen nahe, dass diese speziellen Umstände für die Resonanz existieren, selbst wenn das Material nicht supraleitend ist. „Wir wissen jetzt, dass die Wechselwirkung für die Resonanz nicht erst einsetzt, wenn das Material supraleitend wird; sie ist tatsächlich immer vorhanden“, sagte Rameau.

Michael Sentef, der die experimentellen Aktivitäten durch numerische Simulationen ergänzte, betonte den Einfluss dieser Arbeit auf das Feld der „Pump-Probe“-Spektroskopie. „Diese Arbeit zeigt deutlich, dass wir Fortschritte im theoretischen Verständnis von Systemen fern des thermischen Gleichgewichts gemacht haben, so dass wir jetzt quantitative Vorhersagen treffen können“, sagte er. „Diese Einsicht ist eine große Motivation für künftige Projekte, in denen wir uns mit noch komplexeren Situationen beschäftigen, zum Beispiel wenn Laserpulse genutzt werden, um supraleitungsartige Zustände bei hohen Temperaturen zu erzeugen“, ergänzte Sentef. In einer kürzlich veröffentlichten Arbeit [Mitrano et al., Nature 530, 461–464 (2016)] beobachtete ein Team um MPSD-Direktor Andrea Cavalleri lichtinduzierte supraleitungsartige Eigenschaften in dem Material K3C60.

Ansprechpartner:

Dr. Michael A. Sentef
Max-Planck-Institut für Struktur und Dynamik der Materie
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
Germany
+49 (0)40 8998-6552
michael.sentef@mpsd.mpg.de

Originalpublikation:

J. D. Rameau, S. Freutel, A. F. Kemper, M. A. Sentef, J. K. Freericks, I. Avigo, M. Ligges, L. Rettig, Y. Yoshida, H. Eisaki, J. Schneeloch, R. D. Zhong, Z. J. Xu, G. D. Gu, P. D. Johnson, and U. Bovensiepen, "Energy Dissipation from a Correlated System Driven Out of Equilibrium," Nature Communications (2016), DOI: 10.1038/ncomms13761

Weitere Informationen:

http://dx.doi.org/10.1038/ncomms13761 Originalpublikation
http://dx.doi.org/10.1038/nature16522 Mitrano et al., Nature 530, 461–464 (2016)
http://www.mpsd.mpg.de/forschung/theo Forschungsgruppe von Prof. Dr. Angel Rubio
http://www.mpsd.mpg.de Max-Planck-Institut für Struktur und Dynamik der Materie

Dr. Michael Grefe | Max-Planck-Institut für Struktur und Dynamik der Materie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung
17.07.2018 | Österreichische Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Europaweit erste Patientin mit neuem Hybridgerät zur Strahlentherapie behandelt

19.07.2018 | Medizintechnik

Waldrand oder mittendrin: Das Erbgut von Mausmakis unterscheidet sich je nach Lebensraum

19.07.2018 | Biowissenschaften Chemie

Automatisiertes Befüllen von Regalen im Einzelhandel

19.07.2018 | Verkehr Logistik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics