Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lasereinsatz für direkte Hochspannungs-Messung

05.03.2018

Entwicklung eines Quantennormals: Physiker der TU Darmstadt stellen neues Verfahren vor

Einem Physiker-Team der Universität Darmstadt ist es in Zusammenarbeit mit Wissenschaftlern der Physikalisch-Technischen Bundesanstalt (PTB) und der Universität Mainz gelungen, die Genauigkeit von laserbasierten Hochspannungsmessungen um das Zwanzigfache zu steigern. Die jetzt in der Zeitschrift „Metrologia“ veröffentlichten Ergebnisse weisen den Weg in Richtung der Rückführung hoher Spannungen auf einen Quantenstandard.


Kristian König (r.) und Phillip Imgram optimieren das Lasersystem für die Hochspannungs-messungen.

Bild: Jan-Christoph Hartung

Elektrische Spannungen im Bereich bis etwa 10 Volt können direkt bestimmt werden, indem man sie mit Referenzspannungen vergleicht, die auf dem Josephson Standard basieren. Für die Messung hoher Spannungen werden Hochspannungsteiler angewendet, die aufwendig in mehreren Stufen kalibriert werden müssen. Sie transformieren die Hochspannung auf Spannungen unter 10 Volt herunter.

Die weltweit kleinste derzeit zu erreichende relative Unsicherheit liegt bei diesem Verfahren bei etwa 1 ppm (parts per million), was bei einer Spannung von 20.000 Volt einer Unsicherheit von 20 Millivolt entspricht.

Die jetzt in „Metrologia“ vorgestellte Technik beruht darauf, dass Ionen mit der zu messenden Spannung beschleunigt werden und die dadurch hervorgerufene Geschwindigkeitsänderung gemessen wird. Dazu wird der Dopplereffekt ähnlich wie bei einer Radarfalle eingesetzt: Bewegt sich das Ion auf einen Lichtstrahl zu, tritt eine Blauverschiebung in der Farbe des Lichtes auf.

Umgekehrt wird die Wellenlänge eines Lichtstrahls, der dem Ion nacheilt, in den roten Bereich des Spektrums verschoben. Um diesen Effekt auszunutzen, wird ein Ionenstrahl möglichst exakt auf einer Linie (kollinear) mit zwei Laserstrahlen überlagert. Einen der beiden Laser stellt man so ein, dass seine Wellenlänge (Farbe) an die Geschwindigkeit der Ionen vor der Beschleunigung angepasst ist, während der zweite Laser so eingerichtet wird, dass er mit den Ionen nach der Beschleunigung interagiert.

Aus der Differenz der beiden Laserfrequenzen lässt sich die Geschwindigkeitsänderung berechnen und so die angelegte Beschleunigungsspannung ermitteln. Das reizvolle an dieser Technik ist, dass in die Berechnung der Beschleunigungsspannung neben der gemessenen Laserfrequenz nur unveränderliche Naturkonstanten eingehen: die Lichtgeschwindigkeit, die Masse und Ladung des Ions und die Frequenz der verwendeten Spektrallinie, wenn sich das Ion in Ruhe befindet. Bei der Rückführung einer Messgröße – wie hier die Hochspannung – auf die Konstanten eines Quantensystems (Ionenmasse, ladung und Spektrallinie) spricht man von einem „Quantennormal“.

Erste Experimente zur Realisierung eines solchen Quantennormals mit kollinearer Laserspektroskopie an elektrostatisch beschleunigten Ionen in den 1980er Jahren und um die Jahrtausendwende konnten mit einer Präzision von etwa 100 ppm nicht an die Genauigkeit konventioneller Hochspannungsmessungen heranreichen. Wissenschaftlern der Technischen Universität Darmstadt ist es nun gelungen, eine relative Genauigkeit von 5 ppm zu erreichen.

Zur Demonstration der Genauigkeit stellte die PTB Hochpräzisionsspannungsteiler für Vergleichsmessungen zur Verfügung. Möglich wurde der entscheidende Fortschritt gegenüber den vorangegangenen Experimenten durch die Verwendung eines optischen Frequenzkamms zur präzisen Messung der Laserfrequenzen und eine Messmethode mit zweifacher Laseranregung und differentieller Spannungsmessung, die es erlaubt, systematische Fehlerquellen zu eliminieren. Weiterhin wurde durch ein eigens entwickeltes Optimierungsverfahren sichergestellt, dass Ionen- und Laserstrahl möglichst genau auf einer Linie überlagert sind.

Konkret wurden Calcium-Ionen zunächst auf eine Transportenergie vorbeschleunigt, um dann mit einem Laser mit fester Frequenz markiert zu werden. Das bedeutet, dass nur Ionen einer ausgewählten Geschwindigkeit von dem Laser angeregt und in einen metastabilen Zustand überführt wurden. Darauf folgten die Beschleunigung mit der zu messenden Hochspannung und der Eintritt in eine weitere Wechselwirkungszone.

Dort wurden die zuvor markierten Ionen dann von einem zweiten Laser so angeregt, dass sie beim anschließenden Zerfall in den Grundzustand ein Photon emittierten, welches dann detektiert werden konnte. Aus den genau bekannten Übergangsfrequenzen für ruhende Ionen, der beobachteten Resonanzfrequenzen der sich im Strahl bewegenden Ionen und der Formel für den optischen Dopplereffekt konnten die Wissenschaftler dann die zur Beschleunigung angelegte Hochspannung berechnen.

„Um die Genauigkeit unseres Verfahrens weiter zu steigern, bauen wir derzeit unser Experiment um, so dass wir in Zukunft Indiumionen für die Spektroskopie verwenden können“, erläutert der Erstautor der Studie, Dr. Jörg Krämer. Die hierzu vorgesehene Flüssigmetallionenquelle soll hervorragende Strahleigenschaften bieten und der verwendete optische Übergang weist eine sehr geringe spektrale Linienbreite auf. „Diese Kombination wird uns eine weitere Steigerung der Genauigkeit erlauben“, ergänzt Kristian König, der als Doktorand an dem Projekt beteiligt war. Er hofft, die theoretisch zu erwartende Genauigkeit im sub-ppm Bereich bald auch nachweisbar erreichen zu können.

Die Messung von Hochspannungen mit einer solchen Präzision ist vor allen Dingen bei Grundlagenexperimenten erforderlich. Dazu zählt das KATRIN-Experiment am KIT in Karlsruhe, mit dem Wissenschaftler die bislang nicht bekannte Masse der Neutrinos bestimmen möchten. Aber auch für die künftige Hochspannungs-Gleichstrom-Energieübertragung werden präzise Messungen von Hochspannungen wichtig sein. Die neue Technik könnte zum Beispiel auch genutzt werden, um große Hochspannungsteiler für solche Anlagen präziser zu kalibrieren.

Weitere Informationen
Die in „Metrologia“ erschienenen Ergebnisse basieren auf einer Zusammenarbeit des Instituts für Kernphysik an der Technischen Universität Darmstadt mit der Universität Mainz und der PTB Braunschweig.

Die Veröffentlichung
„High voltage measurements on the 5 ppm relative uncertainty level with collinear laser spectroscopy“, https://doi.org/10.1088/1681-7575/aaabe0

Kontakt
TU Darmstadt
Fachbereich Physik
Prof. Dr. Wilfried Nörtershäuser
Tel.: 06151/16-23575
wnoertershaeuser@ikp.tu-darmstadt.de

Claudia Staub | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tu-darmstadt.de/

Weitere Berichte zu: Dopplereffekt Genauigkeit Hochspannung Ion Ionen Laser Lasereinsatz PTB Präzision Spektrallinie Technik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erste Beweise für Quelle extragalaktischer Teilchen
13.07.2018 | Technische Universität München

nachricht MAGIC-Teleskope finden Entstehungsort von seltenem kosmischen Neutrino
13.07.2018 | Max-Planck-Institut für Physik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungsnachrichten

Maschinelles Lernen: Neue Methode ermöglicht genaue Extrapolation

13.07.2018 | Informationstechnologie

Fachhochschule Südwestfalen entwickelt innovative Zinklamellenbeschichtung

13.07.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics