Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laser für durchdringende Wellen: Forscherteam entwickelt neues Prinzip zur Erzeugung von Terahertz-Strahlung

16.08.2019

Der „Landau-Niveau-Laser“ ist ein spannendes Konzept für eine ungewöhnliche Strahlungsquelle. Er hat das Zeug, höchst effizient sogenannte Terahertz-Wellen zu erzeugen, die sich zum Durchleuchten von Materialen und für die künftige Datenübertragung nutzen ließen. Bislang jedoch scheiterten nahezu alle Versuche, einen solchen Laser in die Tat umzusetzen. Auf dem Weg dorthin ist einem internationalen Forscherteam nun ein wichtiger Schritt gelungen: Im Fachmagazin Nature Photonics stellen sie ein Material vor, das Terahertz-Wellen durch das simple Anlegen eines elektrischen Stroms erzeugt. Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) waren maßgeblich an den Arbeiten beteiligt.

Ebenso wie Licht zählen Terahertz-Wellen zur elektromagnetischen Strahlung. Ihre Frequenzen liegen zwischen denen von Mikrowellen und Infrarotstrahlung. Sowohl für die Technik als auch für die Wissenschaft zeigen sie interessante Eigenschaften: So können Grundlagenforscher mit ihnen die Schwingungen von Kristallgittern oder die Ausbreitung von Spinwellen studieren.


Zirkular polarisierte Terahertz-Pulse (orange Spirale) regen die Elektronen (rot) vom untersten auf das nächst höhere Energieniveau (parabolische Schale) an.

HZDR / Juniks

„Für technische Anwendungen ist interessant, dass Terahertz-Wellen zahlreiche Stoffe durchdringen können, die ansonsten undurchsichtig sind, etwa Kleidung, Kunststoffe und Papier“, erklärt HZDR-Forscher Stephan Winnerl. Eingesetzt werden sie heute bereits bei Sicherheitskontrollen an Flughäfen.

Hier lässt sich mit Terahertz-Scannern prüfen, ob Fluggäste gefährliche Gegenstände unter ihrer Kleidung tragen – und zwar ohne den Einsatz schädlicher Röntgenstrahlung.

Nützlich könnten die Terahertz-Wellen eines Tages auch für die Datenübertragung sein. Der Grund: Sie haben eine höhere Frequenz als die derzeit verwendeten Radiowellen. WLAN beispielsweise funktioniert heute bei Frequenzen von rund zwei bis fünf Gigahertz.

Terahertz-Frequenzen sind rund tausendmal höher und könnten Bilder, Videos und Musik entsprechend schneller übermitteln, wenn auch bei geringeren Reichweiten. Allerdings ist die Technik noch nicht ausgereift.

„Zwar gab es in den letzten Jahren viele Fortschritte“, berichtet Winnerl. „Aber nach wie vor ist es nicht ganz einfach, die Wellen zu erzeugen – die Fachwelt spricht von einer regelrechten Terahertz-Lücke.“

Insbesondere gibt es noch keinen kompakten, leistungsfähigen und zugleich durchstimmbaren Terahertz-Laser.

Flexible Frequenzen

Verantwortlich für die Lichterzeugung in einem Laser sind die Elektronen im Lasermaterial. Steckt man Energie in sie, senden sie Licht aus. Der Grund dafür ist ein Quanteneffekt: Die Elektronen können nicht beliebige Energien aufnehmen, sondern nur bestimmte Portionen. Dementsprechend erfolgt auch die Lichtabgabe portionsweise – in einer bestimmten Farbe und als gebündelter Strahl. Für einen Terahertz-Laser hat die Fachwelt bereits seit längerem ein spezielles Konzept im Blick, den „Landau-Niveau-Laser“.

Das Besondere: Bei ihm lassen sich die Energieniveaus der Elektronen mithilfe eines Magnetfeldes flexibel einstellen. Diese Niveaus bestimmen wiederum, welche Frequenzen die Elektronen abstrahlen. Dadurch ist der Laser durchstimmbar – ein großes Plus für viele wissenschaftliche und technische Anwendungen.

Nur: So einen Laser gibt es bislang noch nicht. „Das Problem war bislang, dass die Elektronen ihre Energie an andere Elektronen weitergeben, statt sie wie gewünscht als Lichtwellen abzustrahlen“, erläutert Winnerl. Den entsprechenden physikalischen Prozess bezeichnen die Fachleute als Auger-Streuung.

Zum Leidwesen der Fachwelt spielt er sich auch in einem Material ab, das als besonders vielversprechend für einen „Landau-Niveau-Laser“ galt: Graphen – eine zweidimensionale Form von Kohlenstoff – zeigte in Experimenten am HZDR eine ausgeprägte Auger-Streuung.

Eine Frage des Materials

Deshalb versuchte es das Forscherteam mit einem anderen Material – einer Verbindung aus Quecksilber, Cadmium und Tellur (HgCdTe). Bislang verwendete man diese Schwermetall-Legierung unter anderem für hochempfindliche Wärmebild-Kameras. Das Besondere an diesem Material: Der Gehalt an den jeweiligen Metallen Quecksilber, Cadmium und Tellur lässt sich sehr genau wählen. Dadurch lässt sich eine bestimmte Eigenschaft – im Fachjargon Bandlücke genannt – gezielt einstellen.

Als Resultat zeigte das Material ähnliche Eigenschaften wie Graphen – aber ohne dessen Nachteil von ausgeprägter Auger-Streuung. „Es gibt subtile Unterschiede zum Graphen, die diese Streuung vermeiden“, sagt Stephan Winnerl. „Vereinfacht ausgedrückt finden die Elektronen keine anderen Elektronen, die die passende Energie aufnehmen könnten.“ Infolgedessen bleibt ihnen nichts Anderes übrig, als ihre Energie in der gewünschten Form loszuwerden – als Strahlung im Terahertz-Bereich.

Das Projekt war ein internationales Teamwork: Russische Projektpartner hatten die HgCdTe-Proben hergestellt, die anschließend die federführende Arbeitsgruppe in Grenoble analysierte. Eine der entscheidenden Untersuchungen fand in Dresden-Rossendorf statt: Mit dem Freie-Elektronen-Laser FELBE feuerten die Fachleute starke Terahertz-Pulse auf die Probe und konnten das Verhalten der Elektronen zeitaufgelöst beobachten. Das Resultat: „Wir haben festgestellt, dass der Auger-Prozess, den wir in Graphen noch beobachtet hatten, tatsächlich verschwunden war“, freut sich Winnerl.

LED für Terahertz

Eine Arbeitsgruppe in Montpellier konnte schließlich beobachten, dass die Verbindung aus HgCdTe tatsächlich Terahertz-Wellen abgibt, wenn man elektrischen Strom anlegt. Indem die Fachleute das zusätzlich angelegte Magnetfeld von nur etwa 200 Millitesla variierten, konnten sie die Frequenz der abgegebenen Wellen im Bereich von ein bis zwei Terahertz variieren – eine durchstimmbare Strahlungsquelle. „Sie ist zwar noch kein Laser, sondern entspricht eher einer Terahertz-LED“, beschreibt Winnerl. „Das Konzept zu einem Laser zu erweitern, sollte aber machbar sein, auch wenn es einiger Anstrengung bedarf.“ Genau das wollen die französischen Projektpartner nun in Angriff nehmen.

Allerdings gilt eine Einschränkung: Bislang funktioniert das Prinzip nur, wenn man es auf sehr tiefe Temperaturen knapp oberhalb des absoluten Nullpunkts kühlt. „Das ist sicher ein Manko für Alltagsanwendungen“, fasst Winnerl zusammen. „Aber für den Einsatz in der Forschung und bei manchen Hightech-Systemen dürfte man mit dieser Kühlung durchaus leben können.“

Publikationen:
D.B. But, M. Mittendorff, C. Consejo, F. Teppe, N.N. Mikhailov, S.A. Dvoretskii, C. Faugeras, S. Winnerl, M. Helm, W. Knap, M. Potemski, M. Orlita: Suppressed Auger scattering and tunable light emission of Landau-quantized massless Kane electrons, in Nature Photonics, 2019 (DOI: 10.1038/s41566-019-0496-1)

Weitere Informationen:
Dr. Stephan Winnerl
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel.: +49 351 260-3522 | E-Mail: s.winnerl@hzdr.de

Medienkontakt:
Simon Schmitt | Wissenschaftsredakteur
Tel.: +49 351 260-3400 | E-Mail: s.schmitt@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
Bautzner Landstr. 400, 01328 Dresden | www.hzdr.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Das HZDR entwickelt und betreibt große Infrastrukturen, die auch von externen Messgästen genutzt werden: Ionenstrahlzentrum, Hochfeld-Magnetlabor Dresden und ELBE-Zentrum für Hochleistungs-Strahlenquellen.
Es ist Mitglied der Helmholtz-Gemeinschaft, hat fünf Standorte (Dresden, Freiberg, Grenoble, Leipzig, Schenefeld bei Hamburg) und beschäftigt knapp 1.200 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Wissenschaftliche Ansprechpartner:

Dr. Stephan Winnerl
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel.: +49 351 260-3522 | E-Mail: s.winnerl@hzdr.de

Originalpublikation:

D.B. But, M. Mittendorff, C. Consejo, F. Teppe, N.N. Mikhailov, S.A. Dvoretskii, C. Faugeras, S. Winnerl, M. Helm, W. Knap, M. Potemski, M. Orlita: Suppressed Auger scattering and tunable light emission of Landau-quantized massless Kane electrons, in Nature Photonics, 2019 (DOI: 10.1038/s41566-019-0496-1)

Simon Schmitt | Helmholtz-Zentrum Dresden-Rossendorf
Weitere Informationen:
http://www.hzdr.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Womit werden wir morgen kühlen?
16.09.2019 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Neues Limit für Neutrinomasse
16.09.2019 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Womit werden wir morgen kühlen?

Wissenschaftler bewerten das Potenzial von Werkstoffen für die magnetische Kühlung

Für das Jahr 2060 erwarten Zukunftsforscher einen Paradigmenwechsel beim globalen Energiekonsum: Erstmals wird die Menschheit mehr Energie zum Kühlen aufwenden...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Meilensteine auf dem Weg zur Atomkern-Uhr

Zwei Forschungsteams gelang es gleichzeitig, den lang gesuchten Kern-Übergang von Thorium zu messen, der extrem präzise Atomkern-Uhren ermöglicht. Die TU Wien ist an beiden beteiligt.

Wenn man die exakteste Uhr der Welt bauen möchte, braucht man einen Taktgeber, der sehr oft und extrem präzise tickt. In einer Atomuhr nutzt man dafür die...

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Technomer 2019 - Kunststofftechniker treffen sich in Chemnitz

16.09.2019 | Veranstaltungen

„Highlights der Physik“ eröffnet

16.09.2019 | Veranstaltungen

Die Digitalisierung verändert die Medizin

13.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Probenhalter für die Proteinkristallographie

16.09.2019 | Biowissenschaften Chemie

Warum die Erdatmosphäre viel Sauerstoff enthält

16.09.2019 | Geowissenschaften

Wissenschaftler erforschen Produktentstehungsprozesse in neuem Innovationslabor

16.09.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics