Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie lange leben Elektronen in Graphen?

01.12.2011
Wissenschaftler aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) haben mit internationalen Kollegen einen wichtigen Baustein zum Verständnis des derzeit intensiv erforschten Materials Graphen hinzugefügt: sie haben die Lebensdauer von Elektronen in Graphen in niedrigen Energiebereichen bestimmt. Dies ist für die künftige Entwicklung schneller elektronischer und optoelektronischer Bauteile von großer Bedeutung. Die Ergebnisse sind vor Kurzem in der Onlineausgabe der Zeitschrift Physical Review Letters (DOI: 10.1103/PhysRevLett.107.237401) erschienen.

Spätestens seitdem die Entdeckung von Graphen im vergangenen Jahr mit dem Physiknobelpreis ausgezeichnet wurde, arbeiten viele Forschergruppen weltweit daran, die grundlegenden physikalischen Eigenschaften des Materials besser zu verstehen und damit zukunftsträchtige elektronische und optoelektronische Anwendungen, wie Transistoren und schnelle Detektoren zur optischen Datenübertragung, zu ermöglichen. Graphen – eine einlagige Kohlenstoffschicht, deren Atome wie in einer Bienenwabe sechseckig angeordnet sind – ist zudem als transparentes Elektrodenmaterial für Flachbildschirme und Solarzellen hochinteressant und könnte laut HZDR-Forscher Dr. Stephan Winnerl auf diesem Einsatzgebiet das knappe Hochtechnologiemetall Indium ersetzen.


Untersuchung von Graphen mit dem Freie-Elektronen-Laser am HZDR. Grafik: HZDR und AlexanderAlUS

Gefördert im Schwerpunktprogramm „Graphen“ der Deutschen Forschungsgemeinschaft sowie mit Mitteln der Europäischen Union ist es Stephan Winnerl und seinen Kollegen vom Helmholtz-Zentrum Dresden-Rossendorf (HZDR) gemeinsam mit Wissenschaftlern der Technischen Universität Berlin, des Grenoble High Magnetic Field Laboratory und des Georgia Institute of Technology, USA, gelungen, die „Lebensdauer“ von Elektronen in Graphen in niedrigen Energiebereichen zu bestimmen, die bisher nicht erforscht waren.

Das für Festkörper charakteristische Verhalten der Elektronen in bestimmten Energiebereichen ist eine von vielen physikalischen Eigenschaften, in denen sich Graphen fundamental von den meisten anderen Materialien unterscheidet: normalerweise können Elektronen nur bestimmte Energieniveaus annehmen (man spricht von Energiebändern), andere wiederum nicht (sie werden als Energielücken bezeichnet). Dieses Prinzip wird z.B. für optoelektronische Bauteile wie Leuchtdioden genutzt, die Licht ganz bestimmter Wellenlängen abstrahlen: dabei wird Energie frei, die die Elektronen beim ‚Überspringen’ der Energielücken abgeben.

Graphen verhält sich anders als andere Halbleiter: hier berühren sich die Energiebänder, ohne dass eine Lücke auftritt. Statt Licht abzugeben besitzt Graphen die Fähigkeit, Strahlung niedriger Energien unterhalb des sichtbaren Spektrums, wie Terahertz- und Infrarotlicht, zu absorbieren, sodass es sich bestens als Material für Detektoren eignet.

Um neue schnelle elektronische und optoelektronische Bauteile auf Basis von Graphen entwickeln zu können, muss genau bekannt sein, wie lange Elektronen auf bestimmten Energieniveaus verweilen. Zur Untersuchung solcher Prozesse, die sich im Pikosekundenbereich abspielen, also auf einer Zeitskala von einem Millionstel Teil einer Millionstel Sekunde, sind sehr schnelle Beobachtungsmethoden notwendig. Das Besondere der am Dresdner Helmholtz-Zentrum durchgeführten Experimente liegt darin, dass die Forscher Graphenproben erstmals mit längerwelligem Licht als bisher bestrahlt haben. Möglich wurde dies durch die kurzen Strahlungspulse aus dem Freie-Elektronen-Laser (FEL) am HZDR. Dadurch konnten die Forscher die Lebensdauer der Elektronen in der Nähe des Berührungspunktes der Energiebänder, der die physikalische Besonderheit von Graphen ausmacht, untersuchen.

Mithilfe des FEL wurden die Graphenproben mit Licht unterschiedlicher Wellenlängen im Infrarotbereich angeregt. Die Forscher stellten fest, dass die Energie der Lichtteilchen, mit denen die Elektronen stimuliert werden, und die Schwingungen des Atomgitters die Lebensdauer der Elektronen beeinflussen: wenn die Energie der Lichtteilchen größer ist als die Energie der Gitterschwingungen, ändern die Elektronen schneller ihren Energiezustand und haben eine kürzere Lebensdauer. Umgekehrt verweilen die Elektronen länger auf einem Energieniveau, wenn die Anregungsenergie kleiner ist als die der Gitterschwingungen.

Die experimentell gewonnenen Ergebnisse werden durch Modellrechnungen an der TU Berlin untermauert. Diese erlauben eine klare Zuordnung der experimentellen Daten zu physikalischen Mechanismen in Graphen. Die Forscher tragen somit zu einem besseren Verständnis der elektronischen und optischen Eigenschaften von Graphen bei.

Publikation: „Carrier dynamics in epitaxial graphene close to the Dirac point“, S. Winnerl, M. Orlita, P. Plochocka, P. Kossacki, M. Potemski, T. Winzer, E. Malic, A. Knorr, M. Sprinkle, C. Berger, W. A. de Heer, H. Schneider, M. Helm, Physical Review Letters 107, 237401 (2011), DOI: 10.1103/PhysRevLett.107.237401

Weitere Informationen
Dr. Stephan Winnerl
Institut für Ionenstrahlphysik und Materialforschung
Tel.: 0351 260-3522
s.winnerl@hzdr.de
Pressekontakt
Dr. Christine Bohnet
Helmholtz-Zentrum Dresden-Rossendorf
Pressesprecherin
Tel.: 0351 260-2450 oder 0160 969 288 56
c.bohnet@hzdr.de | www.hzdr.de
Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) hat das Ziel, langfristig ausgerichtete Spitzenforschung auf gesellschaftlich relevanten Gebieten zu leisten. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie verhält sich Materie unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
• Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
• Wie nutzt man Ressourcen und Energie effizient und sicher?
Zur Beantwortung dieser wissenschaftlichen Fragen werden fünf Großgeräte mit teils einmaligen Experimentiermöglichkeiten eingesetzt, die auch externen Nutzern zur Verfügung stehen.

Das HZDR ist seit 1.1.2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Freiberg, Leipzig und Grenoble und beschäftigt rund 800 Mitarbeiter – davon 380 Wissenschaftler inklusive 120 Doktoranden.

Dr. Christine Bohnet | Helmholtz-Zentrum
Weitere Informationen:
http://www.hzdr.de/db/Cms?pOid=35009&pNid=99

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wendelstein 7-X erreicht Weltrekord
25.06.2018 | Max-Planck-Institut für Plasmaphysik (IPP)

nachricht Schnelle Wasserbildung in diffusen interstellaren Wolken
25.06.2018 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wendelstein 7-X erreicht Weltrekord

Stellarator-Rekord für Fusionsprodukt / Erste Bestätigung für Optimierung

Höhere Temperaturen und Dichten des Plasmas, längere Pulse und den weltweiten Stellarator-Rekord für das Fusionsprodukt hat Wendelstein 7-X in der...

Im Focus: Schnell und innovativ: Jülicher Superrechner ist eine Neuentwicklung aus Europa

Bei der Entwicklung innovativer Superrechner-Architekturen ist Europa dabei, die Führung zu übernehmen. Leuchtendes Beispiel hierfür ist der neue Höchstleistungsrechner, der in diesen Tagen am Jülicher Supercomputing Centre (JSC) an den Start geht. JUWELS ist ein Meilenstein hin zu einer neuen Generation von hochflexiblen modularen Supercomputern, die auf ein erweitertes Aufgabenspektrum abzielen – von Big-Data-Anwendungen bis hin zu rechenaufwändigen Simulationen. Allein mit seinem ersten Modul qualifizierte er sich als Nummer 1 der deutschen Rechner für die TOP500-Liste der schnellsten Computer der Welt, die heute erschienen ist.

Das System wird im Rahmen des von Bund und Sitzländern getragenen Gauß Centre for Supercomputing finanziert und eingesetzt.

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Neueste Entwicklungen in Forschung und Technik

25.06.2018 | Veranstaltungen

Wheat Initiative holt Weizenforscher aus aller Welt an einen Tisch

25.06.2018 | Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wendelstein 7-X erreicht Weltrekord

25.06.2018 | Physik Astronomie

Schnell und innovativ: Jülicher Superrechner ist eine Neuentwicklung aus Europa

25.06.2018 | Informationstechnologie

Leuchtfeuer in der Produktion

25.06.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics