Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kosmische Gläser für die Weltraumforschung

04.01.2016

Wie bildeten sich aus Gesteinspartikeln Asteroiden und Planeten? Dieser Frage gehen Wissenschaftler der Universitäten Münster und Braunschweig in einem Experiment nach. Fraunhofer-Forscher haben für den Versuch Kugeln aus einem Spezialglas entwickelt. Sie bilden die Zusammensetzung der Gesteinspartikel möglichst naturgetreu in kleinem Maßstab ab.

4,57 Milliarden Jahre ist die Erde alt – eine unvorstellbare zeitliche Dimension. Um nachzuvollziehen, wie der blaue Planet einst entstanden ist, analysieren Wissenschaftler heute andere Körper unseres Sonnensystems wie etwa Bruchstücke von Asteroiden, die nach Kollisionen im All als Meteorite auf der Erde eingeschlagen sind.


© Foto Fraunhofer ISC

Der Blick von oben in den Ofeninnenraum zeigt vom Fraunhofer ISC hergestellte Glaskügelchen, die für Experimente zur Weltraumforschung eingesetzt werden.

Nach heutigem Wissensstand haben sich viele planetare Körper durch den Zusammenschluss von Chondren – das sind etwa 0,1 bis 3 mm große Silicatkügelchen – gebildet. Doch wie läuft dieser kosmische Gesteinsbildungsprozess ab?

Das untersuchen Wissenschaftler des Instituts für Planetologie der Westfälischen Wilhelms-Universität in Münster und der Technischen Universität Braunschweig derzeit in Experimenten. Unterstützt werden sie dabei von Forschern des Fraunhofer-Instituts für Silicatforschung ISC in Würzburg. Die Wissenschaftler haben für das Projekt ein Spezialglas entwickelt und daraus winzige Kügelchen geformt, um die Chondren möglichst realistisch abzubilden.

Spezielles Schmelz- und Kristallisationsverhalten

Bisherige Erkenntnisse deuten darauf hin, dass die ursprünglichen Teilchen die Konsistenz von heißem, flüssigem Glas hatten, bevor sie zu größeren Gesteinskonglomeraten aggregierten, abkühlten und auskristallisierten. »Dieses Glas unterscheidet sich von der Materialzusammensetzung stark von technischen Gläsern, mit denen wir üblicherweise arbeiten«, erklärt Dr. Martin Kilo, Abteilungsleiter »Glas« am ISC.

Die Zusammensetzung bedingt jedoch physikalische Eigenschaften wie etwa das Schmelz- und Kristallisationsverhalten. Beides spielt eine zentrale Rolle beim Entstehungsprozess größerer Gesteinskörper.

»Wir haben daher vorab mit Modellierungsprogrammen berechnet, welche Schmelzbedingungen bei den geforderten Zusammensetzungen herrschen, wie stabil die Glasteilchen sind und bei welchen Temperaturen sie in welcher Form kristallisieren«, so Kilo. Eine weitere Herausforderung bestand darin, den Glasteilchen ihre Kugelform zu geben. Dazu nutzen die Experten zwei unterschiedliche Verfahren.

Im ersten Ansatz wird grober Glaskies hergestellt, in die passende Größe gesiebt und anschließend durch thermische Behandlung abgerundet. Die zweite Lösung besteht darin, Glasplatten in kleine Quader zu sägen und mechanisch zu schleifen – ähnlich wie bei der Murmelherstellung.

Für das Experiment haben die Würzburger mehrere Varianten ihrer Kügelchen hergestellt, die sich in ihrer Materialzusammensetzung geringfügig unterscheiden. Diese Kugeln wurden zunächst in speziellen Schmelzaggregaten erhitzt, bei denen sich die Temperatur und Atmosphäre exakt einstellen lassen. Diejenigen Kugeln, die nach diesen Testschmelzen den Eigenschaften aus dem theoretischen Modell am nächsten kamen, wurden für das Projekt ausgewählt.

Experimente im Fallturm

Das Forschungsteam der Universitäten Münster und Braunschweig setzt die kosmischen Glaskügelchen aus dem ISC nun bei Experimenten am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) in Bremen ein: Der dort betriebene Fallturm umschließt eine 120 Meter hohe stählerne Fallröhre, in welcher ein Hochvakuum erzeugt wird. Mittels eines Katapultsystems werden die Glaskügelchen in einer Kapsel bis zur Spitze der Fallröhre geschossen. Auf diese Weise erreicht man ca. 9,5 Sekunden Schwerelosigkeit – also Bedingungen wie im All. Die Glaskügelchen werden in dieser Zeit auf bis zu 1100°C erhitzt.

Während des Fallvorgangs kollidieren die Kugeln und bilden Cluster. Die Experten zeichnen das Kollisionsverhalten mit Hochgeschwindigkeitskameras auf, die Kollegen an der TU Braunschweig werten es aus. »Unsere Münsteraner Kollegen untersuchen dann, wie die Kugeln zusammenwachsen, ob die Cluster aus einer homogenen Masse bestehen oder ob die Form der einzelnen Kugeln noch erkennbar ist und ob und inwieweit es zur Auskristallisierung kommt«, erläutert Kilo. Im nächsten Schritt wollen die Planetologen dann die Ergebnisse mit Beobachtungen an Meteoriten vergleichen und Rückschlüsse auf die Gültigkeit ihrer theoretischen Modelle ziehen.

Kontakt
Lena Hirnickel

Marketing und Kommunikation / Pressearbeit

Fraunhofer-Institut für Silicatforschung ISC
Neunerplatz 2
97082 Würzburg

Telefon +49(0)9 31/41 00-599

E-Mail senden

Lena Hirnickel | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2016/januar/kosmische-glaeser-fuer-die-weltraumforschung.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blindgänger mit Laser entschärft: Erfolgreicher Feldversuch zum Projektende
16.10.2019 | Laser Zentrum Hannover e.V.

nachricht Rätsel gelöst: Das Quantenleuchten dünner Schichten
15.10.2019 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

Bauingenieure im Dialog 2019: Vorträge stellen spannende Projekte aus dem Spezialtiefbau vor

15.10.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2019

14.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

16.10.2019 | Messenachrichten

Es braucht mehr als einen globalen Eindruck, um einen Fisch zu bewegen

16.10.2019 | Biowissenschaften Chemie

Blindgänger mit Laser entschärft: Erfolgreicher Feldversuch zum Projektende

16.10.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics