Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kometeneis im Labor

30.05.2016

Poröses Eis, wie es im Weltall überall zu finden ist, haben der Innsbrucker Chemiker Thomas Lörting und sein Team näher unter die Lupe genommen. In der Fachzeitschrift Physical Review Letters berichten die Forscher, wie sie das amorphe Eis beim Aufwärmen beobachtet haben. Die als mögliche Geburtsstätte des Lebens geltenden Eisstrukturen zeigen dabei ein überraschendes Verhalten.

Als die Raumsonde Rosetta im November 2014 den Lander Philae auf den Kometen Tschurjumow-Gerassimenko – kurz Tschuri – niedergehen ließ, war die Spannung groß. Zum ersten Mal war die Menschheit einem dieser durchs Weltall fliegenden Staub- und Eisriesen so nahegekommen.


Blick in die Versuchanordnung am Rutherford Appleton Laboratory in Großbritannien.

Uni Innsbruck

Die folgenden Untersuchungen drehten sich vor allem um das Wasser auf dem Kometen und die Suche nach organischen Verbindungen, die einen Hinweis auf den Ursprung des Lebens geben könnten. „Im Weltall liegt Wasser zu einem sehr großen Teil als amorphes Eis vor“, erklärt Thomas Lörting vom Institut für Physikalische Chemie der Universität Innsbruck.

„Wenn sich Wassermoleküle an der extrem kalten Oberfläche des interstellaren Staubs ablagern, bildet sich Eis mit einer mikroporösen Struktur, die über eine riesige Oberfläche verfügt. Ein Gramm dieses Materials könnte man auf 500 Quadratmeter ausrollen.“

Dieses mit Aktivkohle vergleichbare Eis wirkt im Weltall wie ein Staubsauger, der alle Moleküle in der Umgebung aufnimmt und in den feinen Poren einlagert. Dort sind die Moleküle vor der harten Strahlung im All geschützt. Es gibt deshalb Vermutungen, dass die ersten Moleküle des Lebens, wie Peptide und Proteine, dort entstanden sein könnten.

Geburtsstätte des Lebens?

Thomas Lörting und sein Team haben nun im Labor untersucht, welche Bedingungen in diesen Eis-Poren herrschen. „Wenn Kometen auf die Sonne zufliegen, erwärmt sich das Eis und erweicht“, sagt der Chemiker. „Wir wollten uns das im Detail anschauen und haben das amorphe Eis mit einer ganz neuen Methode näher untersucht.“

Die in einem von Lörtings Team entwickelten Verfahren an der Uni Innsbruck hergestellten Proben wurden dazu nach England überführt und dort im Rutherford Appleton Laboratory in der Nähe von Oxford in einem gepulsten Neutronenreaktor analysiert. „Anhand der Kleinwinkelstreuung lässt sich die Porenstruktur des Eises sehr gut erkennen“, erzählt Lörting.

Gemeinsam mit Kollegen von der Open University in Milton Keynes untersuchten die Innsbrucker Forscher nun, bei welchen Temperaturen und wie genau sich die Mikroporen des Eises verändern: „Die anfangs rauen, zylinderförmigen Poren des Eises werden zunächst glatt und sacken dann in sich zusammen“, schildert Thomas Lörting seine Beobachtungen. „Man kann sich das vorstellen, wie einen Joghurtbecher, der im Backrohr langsam zusammensackt.“ Das Eis bildet dann lamellenförmige, zweidimensionale Strukturen aus. Gleichzeitig reduziert sich die Oberfläche auf weniger als ein Quadratmeter pro Gramm.

Flüssiges Wasser

Eine wichtige weitere Entdeckung: Oberhalb einer Temperatur von minus 150 Grad Celsius bildet sich flüssiges Wasser, das erst bei minus 120 Grad auskristallisiert und die in den Poren gesammelten Moleküle freigibt. Diese bilden beim Flug zur Sonne den für Kometen charakteristischen Schweif. „Die zweidimensionalen Strukturen und das flüssige Wasser bei so extrem tiefen Temperaturen sind eine sehr spezielle Umgebung für chemische Prozesse. Wir wollen in einem nächsten Schritt diese Prozesse mit im Eis eingelagerten Molekülen näher untersuchen“, blickt Lörting bereits in die Zukunft.

Die von den Chemikern im Labor gesammelten Daten sind wichtig für die Kometenforschung, umgekehrt wartet das Innsbrucker Forschungsteam gespannt auf weitere Daten der Rosetta-Mission. „Unter seiner staubigen Haut besteht Tschuri zu einem großen Teil aus diesem amorphen Eis. Messungen der ESA-Sonde sind deshalb für uns von großem Interesse“, sagt Lörting.

Die Experimente von Lörtings Team fanden im Rahmen der Forschungsplattform Material- und Nanowissenschaften der Universität Innsbruck statt und wurden unter anderem vom österreichischen Wissenschaftsfonds FWF und dem ESF Forschungsnetzwerk Micro-DICE finanziell unterstützt.

Publikation: Neutron Scattering Analysis of Water’s Glass Transition and Micropore Collapse in Amorphous Solid Water. Catherine R. Hill, Christian Mitterdorfer, Tristan G. A. Youngs, Daniel T. Bowron, Helen J. Fraser, and Thomas Loerting. Phys. Rev. Lett. 116, 215501
DOI: 10.1103/PhysRevLett.116.215501

Kontakt:
assoz. Prof. Dr. Thomas Lörting
Institut für Physikalische Chemie
Universität Innsbruck
Tel.: +43 512 507 58019
E-Mail: thomas.loerting@uibk.ac.at

Dr. Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Tel.: +43 512 507 32022
E-Mail: christian.flatz@uibk.ac.at

Weitere Informationen:

http://homepage.uibk.ac.at/~c724117/ - Forschungsgruppe Thomas Lörting
http://www.uibk.ac.at/physchem/ - Institut für Physikalische Chemie
http://www.uibk.ac.at/advancedmaterials/ - Forschungsplattform Material- und Nanowissenschaften (Advanced Materials)

Dr. Christian Flatz | Universität Innsbruck

Weitere Berichte zu: Innsbrucker Kometen Moleküle Nanowissenschaften

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp
18.10.2019 | Forschungsverbund Berlin e.V.

nachricht Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED
17.10.2019 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics