Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Klassische Verschränkung: Rasende Teilchen im Laserblick

18.11.2015

Ein radial polarisierter Laserstrahl dient als Bewegungssensor für schnelle Teilchen

Winzige Teilchen zu verfolgen, könnte künftig einfacher werden – selbst wenn sie mit der Geschwindigkeit einer Gewehrkugel durch die Gegend sausen. Denn Forscher des Max-Planck-Instituts für die Physik des Lichts um Christoph Marquardt und Gerd Leuchs haben festgestellt, dass sich solche Partikel mit einem radial polarisierten Laserstrahl gewissermaßen filmen lassen.


Im Flug verfolgt: Physiker des Max-Planck-Instituts für die Physik des Lichts verfolgen den Weg einer ein Millimeter großen Metallkugel, die durch einen radial polarisierten Laserstrahl fliegt, in dem sich die durch die Pfeile symbolisierten Polarisationen wie die Speichen eines Rades anordnen. In einem solchen Lichtstrahl sind die Polarisation und Informationen über die räumliche Struktur des Strahls miteinander klassisch verschränkt. Daher lässt sich die Position des Kügelchens durch Messungen der Polarisation bestimmen.

© Optica 2015, MPI für die Physik des Lichts

In radial polarisiertem Licht ordnen sich die Schwingungsebenen der Lichtwellen wie die Speichen eines Rades an. Wenn die Forscher ein Teilchen durch einen solchen Laserstrahl fliegen lassen, können sie seine Position mehrere Milliarden Mal in der Sekunde bestimmen, indem sie die Polarisation des Strahls messen.

Dabei machen sich die Physiker zunutze, dass die Polarisation des Laserstrahls und seine räumliche Struktur miteinander klassisch verschränkt sind. Bislang lässt sich der Weg etwa von sehr schnellen Objekten nur mit teuren Hochgeschwindigkeitskameras verfolgen. Diese laufen zudem nur für den Bruchteil einer Sekunde, ehe sie neu gestartet werden müssen.

Gewöhnlich gilt die Verschränkung als Paradebeispiel für die abenteuerlichen Herausforderungen, die unsere Vorstellungskraft zu bewältigen hat, wenn sie es mit der Quantenmechanik, der nicht-klassischen Physik, zu tun bekommt. So beeinflussen sich Eigenschaften zweier verschränkter Teilchen gegenseitig ohne jeden Zeitverzug – und das sogar über weite Strecken. Doch auch die klassische Physik kennt ein Analogon zur quantenmechanischen Verschränkung:

„In einem radial polarisierten Lichtstrahl hängt die Polarisation mit der Verteilung des elektromagnetischen Feldes zusammen“, sagt Christoph Marquardt, der in der Abteilung von Gerd Leuchs am Max-Planck-Institut für die Physik des Lichts in Erlangen, eine Forschungsgruppe leitet. „Erstaunlicherweise gleicht die mathematische Beschreibung dieses Zusammenhangs derjenigen der quantenmechanischen Verschränkung.“

Allerdings präsentiert sich die klassische Verschränkung nicht ganz so geisterhaft, wie quantenmechanische. So hängen die beiden Eigenschaften des radial polarisierten Laserstrahls zwar untrennbar voneinander ab. Aber sie beeinflussen sich anders als bei der quantenmechanischen Verschränkung nicht über weite Strecken. Vielmehr gilt die klassische Verschränkung nur innerhalb eines Lichtstrahls. Dennoch hat sie einen praktischen Nutzen:

Über den Zusammenhang von Polarisation und Ortsinformation bestimmen die Physiker um Christoph Marquardt die Position eines Teilchens, das senkrecht durch einen Laserstrahl rast. Und weil sich die Polarisation eines Lichtstrahls mehr als eine Milliarde Mal in der Sekunde messen lässt, können die Erlanger Forscher den Flug selbst eines sehr schnellen Teilchens durch den Laserstrahl verfolgen. „Über Messungen der Polarisation können wir Objekte mit jeder irdischen Geschwindigkeit verfolgen“, sagt Christoph Marquardt.

Experimente belegen, wie gut der Bewegungssensor funktioniert

Was dabei geschieht, lässt sich auch veranschaulichen, ohne in die mathematischen Formeln der klassischen Verschränkung einzusteigen. Es reicht ein genauer Blick auf die radiale Polarisation: Polarisierte Lichtwellen stellen Physiker gerne in Form von Pfeilen dar. Bei einem radial polarisierten Lichtstrahl ordnen sich die Pfeile kranzförmig um den Strahlmittelpunkt an. Es gibt also zu jedem Pfeil, der aus dem Zentrum des Strahls herausragt, einen anderen, der genau in die entgegengesetzte Richtung zeigt. Das heißt, unterm Strich mitteln sich alle Polarisationen zu Null.

Wenn nun an einer Stelle Polarisationsrichtungen abgeschattet werden, haben die gegenüberliegenden Pfeile kein Gegenstück mehr – es bleibt also eine Nettopolarisation, und zwar für jeden Weg eines Partikels durch den Lichtstrahl eine andere. Allerdings lässt sich die Bahn mit einem Laserstrahl nur dann eindeutig bestimmen, wenn man die ungefähre Größe des Teilchens kennt. Denn ein kleines Kügelchen, das dicht am Mittelpunkt des Strahls vorbeifliegt, hinterlässt in der Polarisation dieselbe Spur wie eine größere Kugel, die den Strahl in größerem Abstand zum Zentrum passiert.

Wie gut ihr optischer Bewegungssensor funktioniert, belegten die Erlanger Forscher in Experimenten. So zeichneten sie die Bahn eines einen Millimeter dicken Metallkügelchens durch den Laserstrahl mit einer hohen zeitlichen Auflösung auf, das heißt in sehr dicht aufeinander folgenden Momentaufnahmen. Schließlich testeten sie noch, wie schnell der Sensor auf einen Gegenstand reagiert, der im Strahl auftaucht. Zu diesem Zweck ließen sie eine Messerklinge mit einer Geschwindigkeit von 27 Metern pro Sekunde in den Laserstrahl schnellen. Dabei verdunkelte sich der Laserstrahl innerhalb von 92 Nanosekunden, also in 92 Milliardstel Sekunden, was die Physiker in Schritten von Bruchteilen einer Nanosekunde festhielten.

Klassisch verschränkte Laserstrahlen könnten die Lidar-Technik verfeinern

„In diesen Tests zeigt die neue Technik, dass sie den heute gebräuchlichen Methoden, mit denen sehr schnelle Objekte verfolgt werden, in mancher Hinsicht überlegen ist“, sagt Christoph Marquardt. So frieren Hochgeschwindigkeitskameras Gegenstände, die durch ihr Blickfeld flitzen, zwar in Milliarden Bildern pro Sekunde ein, sie sind aber nicht nur sehr teuer, sondern laufen auch nur für den Bruchteil einer Sekunde.

Auch Lichtblitze fangen heute schon Teilchenbahnen ein, und zwar mit sehr hoher zeitlicher Auflösung. Zu diesem Zweck wird die Verzögerung, mit der ein Lichtblitz nach dem Start eines Teilchens ein Bild von diesem schießt, in sehr kleinen Schritten variiert. Das bedeutet aber nicht nur, dass man wissen muss, wann das Teilchen startet. Um seine komplette Bahn aufzuzeichnen, muss der Prozess auch sehr oft auf exakt die gleiche Weise wiederholt werden.

Derlei Nachteile bringt die Technik der Erlanger Physiker nicht mit sich. „Wir können uns für unsere Methode daher einige Anwendungen vor allem in der Forschung vorstellen, auch weil sie vergleichsweise einfach und kostengünstig ist“, sagt Stefan Berg-Johansen, der an dem Projekt gearbeitet hat. „Und wenn wir zusätzliche oder andersartige Laserstrahlen verwenden, können wir die Bewegung eines Teilchens sogar in drei Dimensionen abbilden.“

Mit radial polarisierten Laserstrahlen lässt sich etwa das Hin und Her eines Partikels verfolgen, das mit einer optischen Pinzette mehr oder weniger fest gehalten wird. Oder der Weg, den ein Teilchen aufgrund seiner thermischen Bewegung nimmt. Und schließlich ließe sich mit klassisch verschränkten Laserstrahlen die heutige Lidar-Technik verfeinern, mit der in Wissenschaft und Technik bereits heute oft Entfernungen und Geschwindigkeiten gemessen werden. Ein Lidar misst Distanzen und Bewegungen in Richtung des Laserstrahls, mithilfe der Erlanger Methode ließen sich dabei auch Querbewegungen auf einfache Weise verfolgen.


Ansprechpartner

Dr. Christoph Marquardt
Max-Planck-Institut für die Physik des Lichts, Erlangen
Telefon: +49 9131 6877-129

E-Mail: Christoph.Marquardt@mpl.mpg.de


Originalpublikation
Stefan Berg-Johansen, Falk Töppel, Birgit Stiller, Peter Banzer, Marco Ornigotti, Elisabeth Giacobino, Gerd Leuchs, Andrea Aiello und Christoph Marquardt

Classically entangled optical beams for high-speed kinematic sensing

Optica, 28. September 2015; doi: 10.1364/OPTICA.2.000864

Dr. Christoph Marquardt | Max-Planck-Institut für die Physik des Lichts, Erlangen
Weitere Informationen:
https://www.mpg.de/9743558/klassisch-verschraenkt-bewegungssensor

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik
20.07.2018 | Technische Universität Berlin

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics