Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Klassische Verschränkung: Rasende Teilchen im Laserblick

18.11.2015

Ein radial polarisierter Laserstrahl dient als Bewegungssensor für schnelle Teilchen

Winzige Teilchen zu verfolgen, könnte künftig einfacher werden – selbst wenn sie mit der Geschwindigkeit einer Gewehrkugel durch die Gegend sausen. Denn Forscher des Max-Planck-Instituts für die Physik des Lichts um Christoph Marquardt und Gerd Leuchs haben festgestellt, dass sich solche Partikel mit einem radial polarisierten Laserstrahl gewissermaßen filmen lassen.


Im Flug verfolgt: Physiker des Max-Planck-Instituts für die Physik des Lichts verfolgen den Weg einer ein Millimeter großen Metallkugel, die durch einen radial polarisierten Laserstrahl fliegt, in dem sich die durch die Pfeile symbolisierten Polarisationen wie die Speichen eines Rades anordnen. In einem solchen Lichtstrahl sind die Polarisation und Informationen über die räumliche Struktur des Strahls miteinander klassisch verschränkt. Daher lässt sich die Position des Kügelchens durch Messungen der Polarisation bestimmen.

© Optica 2015, MPI für die Physik des Lichts

In radial polarisiertem Licht ordnen sich die Schwingungsebenen der Lichtwellen wie die Speichen eines Rades an. Wenn die Forscher ein Teilchen durch einen solchen Laserstrahl fliegen lassen, können sie seine Position mehrere Milliarden Mal in der Sekunde bestimmen, indem sie die Polarisation des Strahls messen.

Dabei machen sich die Physiker zunutze, dass die Polarisation des Laserstrahls und seine räumliche Struktur miteinander klassisch verschränkt sind. Bislang lässt sich der Weg etwa von sehr schnellen Objekten nur mit teuren Hochgeschwindigkeitskameras verfolgen. Diese laufen zudem nur für den Bruchteil einer Sekunde, ehe sie neu gestartet werden müssen.

Gewöhnlich gilt die Verschränkung als Paradebeispiel für die abenteuerlichen Herausforderungen, die unsere Vorstellungskraft zu bewältigen hat, wenn sie es mit der Quantenmechanik, der nicht-klassischen Physik, zu tun bekommt. So beeinflussen sich Eigenschaften zweier verschränkter Teilchen gegenseitig ohne jeden Zeitverzug – und das sogar über weite Strecken. Doch auch die klassische Physik kennt ein Analogon zur quantenmechanischen Verschränkung:

„In einem radial polarisierten Lichtstrahl hängt die Polarisation mit der Verteilung des elektromagnetischen Feldes zusammen“, sagt Christoph Marquardt, der in der Abteilung von Gerd Leuchs am Max-Planck-Institut für die Physik des Lichts in Erlangen, eine Forschungsgruppe leitet. „Erstaunlicherweise gleicht die mathematische Beschreibung dieses Zusammenhangs derjenigen der quantenmechanischen Verschränkung.“

Allerdings präsentiert sich die klassische Verschränkung nicht ganz so geisterhaft, wie quantenmechanische. So hängen die beiden Eigenschaften des radial polarisierten Laserstrahls zwar untrennbar voneinander ab. Aber sie beeinflussen sich anders als bei der quantenmechanischen Verschränkung nicht über weite Strecken. Vielmehr gilt die klassische Verschränkung nur innerhalb eines Lichtstrahls. Dennoch hat sie einen praktischen Nutzen:

Über den Zusammenhang von Polarisation und Ortsinformation bestimmen die Physiker um Christoph Marquardt die Position eines Teilchens, das senkrecht durch einen Laserstrahl rast. Und weil sich die Polarisation eines Lichtstrahls mehr als eine Milliarde Mal in der Sekunde messen lässt, können die Erlanger Forscher den Flug selbst eines sehr schnellen Teilchens durch den Laserstrahl verfolgen. „Über Messungen der Polarisation können wir Objekte mit jeder irdischen Geschwindigkeit verfolgen“, sagt Christoph Marquardt.

Experimente belegen, wie gut der Bewegungssensor funktioniert

Was dabei geschieht, lässt sich auch veranschaulichen, ohne in die mathematischen Formeln der klassischen Verschränkung einzusteigen. Es reicht ein genauer Blick auf die radiale Polarisation: Polarisierte Lichtwellen stellen Physiker gerne in Form von Pfeilen dar. Bei einem radial polarisierten Lichtstrahl ordnen sich die Pfeile kranzförmig um den Strahlmittelpunkt an. Es gibt also zu jedem Pfeil, der aus dem Zentrum des Strahls herausragt, einen anderen, der genau in die entgegengesetzte Richtung zeigt. Das heißt, unterm Strich mitteln sich alle Polarisationen zu Null.

Wenn nun an einer Stelle Polarisationsrichtungen abgeschattet werden, haben die gegenüberliegenden Pfeile kein Gegenstück mehr – es bleibt also eine Nettopolarisation, und zwar für jeden Weg eines Partikels durch den Lichtstrahl eine andere. Allerdings lässt sich die Bahn mit einem Laserstrahl nur dann eindeutig bestimmen, wenn man die ungefähre Größe des Teilchens kennt. Denn ein kleines Kügelchen, das dicht am Mittelpunkt des Strahls vorbeifliegt, hinterlässt in der Polarisation dieselbe Spur wie eine größere Kugel, die den Strahl in größerem Abstand zum Zentrum passiert.

Wie gut ihr optischer Bewegungssensor funktioniert, belegten die Erlanger Forscher in Experimenten. So zeichneten sie die Bahn eines einen Millimeter dicken Metallkügelchens durch den Laserstrahl mit einer hohen zeitlichen Auflösung auf, das heißt in sehr dicht aufeinander folgenden Momentaufnahmen. Schließlich testeten sie noch, wie schnell der Sensor auf einen Gegenstand reagiert, der im Strahl auftaucht. Zu diesem Zweck ließen sie eine Messerklinge mit einer Geschwindigkeit von 27 Metern pro Sekunde in den Laserstrahl schnellen. Dabei verdunkelte sich der Laserstrahl innerhalb von 92 Nanosekunden, also in 92 Milliardstel Sekunden, was die Physiker in Schritten von Bruchteilen einer Nanosekunde festhielten.

Klassisch verschränkte Laserstrahlen könnten die Lidar-Technik verfeinern

„In diesen Tests zeigt die neue Technik, dass sie den heute gebräuchlichen Methoden, mit denen sehr schnelle Objekte verfolgt werden, in mancher Hinsicht überlegen ist“, sagt Christoph Marquardt. So frieren Hochgeschwindigkeitskameras Gegenstände, die durch ihr Blickfeld flitzen, zwar in Milliarden Bildern pro Sekunde ein, sie sind aber nicht nur sehr teuer, sondern laufen auch nur für den Bruchteil einer Sekunde.

Auch Lichtblitze fangen heute schon Teilchenbahnen ein, und zwar mit sehr hoher zeitlicher Auflösung. Zu diesem Zweck wird die Verzögerung, mit der ein Lichtblitz nach dem Start eines Teilchens ein Bild von diesem schießt, in sehr kleinen Schritten variiert. Das bedeutet aber nicht nur, dass man wissen muss, wann das Teilchen startet. Um seine komplette Bahn aufzuzeichnen, muss der Prozess auch sehr oft auf exakt die gleiche Weise wiederholt werden.

Derlei Nachteile bringt die Technik der Erlanger Physiker nicht mit sich. „Wir können uns für unsere Methode daher einige Anwendungen vor allem in der Forschung vorstellen, auch weil sie vergleichsweise einfach und kostengünstig ist“, sagt Stefan Berg-Johansen, der an dem Projekt gearbeitet hat. „Und wenn wir zusätzliche oder andersartige Laserstrahlen verwenden, können wir die Bewegung eines Teilchens sogar in drei Dimensionen abbilden.“

Mit radial polarisierten Laserstrahlen lässt sich etwa das Hin und Her eines Partikels verfolgen, das mit einer optischen Pinzette mehr oder weniger fest gehalten wird. Oder der Weg, den ein Teilchen aufgrund seiner thermischen Bewegung nimmt. Und schließlich ließe sich mit klassisch verschränkten Laserstrahlen die heutige Lidar-Technik verfeinern, mit der in Wissenschaft und Technik bereits heute oft Entfernungen und Geschwindigkeiten gemessen werden. Ein Lidar misst Distanzen und Bewegungen in Richtung des Laserstrahls, mithilfe der Erlanger Methode ließen sich dabei auch Querbewegungen auf einfache Weise verfolgen.


Ansprechpartner

Dr. Christoph Marquardt
Max-Planck-Institut für die Physik des Lichts, Erlangen
Telefon: +49 9131 6877-129

E-Mail: Christoph.Marquardt@mpl.mpg.de


Originalpublikation
Stefan Berg-Johansen, Falk Töppel, Birgit Stiller, Peter Banzer, Marco Ornigotti, Elisabeth Giacobino, Gerd Leuchs, Andrea Aiello und Christoph Marquardt

Classically entangled optical beams for high-speed kinematic sensing

Optica, 28. September 2015; doi: 10.1364/OPTICA.2.000864

Dr. Christoph Marquardt | Max-Planck-Institut für die Physik des Lichts, Erlangen
Weitere Informationen:
https://www.mpg.de/9743558/klassisch-verschraenkt-bewegungssensor

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Unsterbliche Quantenteilchen: Der Zyklus von Zerfall und Wiedergeburt
14.06.2019 | Technische Universität München

nachricht Ins Innere von Materialien blicken
13.06.2019 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Im Focus: Schwerefeldbestimmung der Erde so genau wie noch nie

Forschende der TU Graz berechneten aus 1,16 Milliarden Satellitendaten das bislang genaueste Schwerefeldmodell der Erde. Es liefert wertvolles Wissen für die Klimaforschung.

Die Erdanziehungskraft schwankt von Ort zu Ort. Dieses Phänomen nutzen Geodäsie-Fachleute, um geodynamische und klimatologische Prozesse zu beobachten....

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

Künstliche Intelligenz in der Materialmikroskopie

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

German Innovation Award für Rittal VX25 Schaltschranksystem

14.06.2019 | Förderungen Preise

Fraunhofer SCAI und Uni Bonn zeigen innovative Anwendungen und Software für das High Performance Computing

14.06.2019 | Messenachrichten

Autonomes Premiumtaxi sofort oder warten auf den selbstfahrenden Minibus?

14.06.2019 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics