Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kalte Moleküle für die Quantentechnologie: TU Graz erschließt neue Molekülklasse

29.10.2014

Physiker der TU Graz haben eine neue Molekülklasse erschlossen: Erstmals konnte das Molekül RbSr experimentell mittels suprakalter Heliumnanotröpfchen aus Rubidium- und Strontiumatomen hergestellt werden. Dies markiert einen wesentlichen Fortschritt in der ultrakalten Molekülphysik nahe dem absoluten Nullpunkt und erweitert die Möglichkeiten der Informationsverarbeitung mittels Quantentechnologie. Das Forschungsergebnis wurde in der aktuellen Ausgabe des renommierten Fachjournals „Physical Review Letters“ publiziert

Quantentechnologien machen sich die quantenmechanischen Eigenschaften von Materiebausteinen und Licht zu Nutze. In der Welt der Atome wird Energie nicht in beliebiger Menge ausgetauscht, sondern nur in „Energiepaketen“ gewisser Größe, sogenannten Quanten.

Im Vergleich zu Atomen stehen Molekülen sehr viel mehr Möglichkeiten offen, Energiepakete unterschiedlicher Größe aufzunehmen oder abzugeben. Sie besitzen mehr „Energiefreiheitsgrade“, und können noch dazu elektrische und magnetische Dipolmomente besitzen, die gewisse Manipulationen erlauben.

Zusätzlich zu den Quanteneigenschaften der einzelnen Teilchen kommt ein besonderer Aspekt zum Tragen, wenn die Teilchen auf sehr niedrige Temperaturen gekühlt werden, und aus einer klassischen Wolke von Atomen oder Molekülen ein Quantengas wird.

Was sind Quantengase?

Die Erzeugung von atomaren Quantengasen hat in den vergangenen 19 Jahren eine Revolution in der Atomphysik ausgelöst. Quantengase bestehen aus extrem gekühlten Atomen, die auf Grund ihrer Wellennatur in einen neuen Materiezustand übergehen. Sie gehorchen dann einer sogenannten Quantenstatistik, die einem Ensemble aus Millionen von Atomen ein kollektives Verhalten verleiht, so dass sie sich zum Beispiel als kohärente Atomwelle analog zu einem gebündelten Laserlichtstrahl bewegen.

Zu diesem Zweck werden die Atome gezielt mittels Lasern auf beinahe 0 Kelvin, also minus 273 Grad Celsius gekühlt, was dem absoluten Temperaturnullpunkt entspricht. „Derart gekühlt haben die Atome gänzlich veränderte Eigenschaften. Ihre thermische Bewegung kommt fast zum Stillstand, sie haben ‚Wellencharakter‘ und ‚verschmieren‘ zu einem neuartigen Kollektiv.

Das hat von Quantensimulationen bis zu hochpräzisen Messinstrumenten eine Reihe neuer Möglichkeiten mit sich gebracht“, erklärt Wolfgang Ernst vom Institut für Experimentalphysik der TU Graz. Rasch war klar, dass Experimente an zumindest zweiatomigen Molekülen breitere Perspektiven eröffnen würden als dies mit einzelnen Atomen der Fall ist. Unklar blieb zunächst: Eignen sich Moleküle für diese extreme Kühlung und wenn ja, welche Kühlungsmethode ist am wirksamsten?

Moleküle gesucht

Als Erfolgsstrategie hat sich die Herstellung ultrakalter Moleküle aus zuvor bereits separat gekühlten Atomen erwiesen. Inzwischen gelingt es Forschergruppen in der ganzen Welt, ultrakalte zweiatomige Moleküle aus verschiedenen Alkalimetallatomen zu erzeugen. Die ultrakalten Moleküle lassen sich über das elektrische „Ungleichgewicht“ oder Dipolmoment, das alle aus unterschiedlichen Atomen zusammengesetzten, zweiatomigen Moleküle besitzen, gezielt adressieren und können somit eine gewünschte Reihe von Reaktionen auslösen.

Noch mehr Steuerungsmöglichkeiten gäbe es allerdings, wenn sich die Moleküle nicht nur via elektrisches Dipolmoment, sondern auch magnetisch „kontrollieren“ ließen. Ein solches Molekül galt es herzustellen und zu untersuchen – eine Herausforderung, der sich das Forscherteam der TU Graz erfolgreich gestellt hat. „Zweiatomige Moleküle aus einem Alkalimetallatom und einem Erdalkaliatom, beispielsweise die Paarung von Rubidium und Strontium, haben die gewünschten Eigenschaften.

Da dieses Molekül namens RbSr bislang experimentell nicht hergestellt werden konnte, war die Forschung ausschließlich auf theoretische Berechnungen angewiesen“, so Ernst. Mit seinem Team hat er dennoch einen Weg gefunden und einzelne Rubidium- und Strontiumatome auf kalten supraflüssigen Heliumnanotröpfchen isoliert. „Ganz auf sich alleine gestellt, finden die Atome in einer solchen Umgebung unweigerlich zueinander“, so der Physiker.

Diese neue Molekülklasse wurde von den Forschern der TU Graz anschließend mit verschiedenen Laseruntersuchungen vermessen; parallel dazu führten sie quantenmechanische Berechnungen durch. Sie konnten dadurch verschiedene elektronische Zustände des neuen Moleküls zuordnen und Details über die innermolekularen Wechselwirkungen ermitteln.

„Beides wird helfen, die Moleküle auch in ultrakalten Atomgemischen in einer magneto-optischen Falle zu erzeugen und damit Quanteninformationstechnologien noch ein Stück weiter zu bringen“, so Wolfgang Ernst. Für dieses Folgeprojekt kooperieren die Forscher der TU Graz mit einer Physikergruppe der Universität Amsterdam.

Förderung vom Land Steiermark

Die neue Molekülklasse RbSr ist kein Zufalls- sondern ein Nebenprodukt eines Forschungsprojektes von Wolfgang Ernst, in dem es um neuartige Materialbausteine für die Nanotechnologie geht. Dieses Projekt wurde finanziell gefördert vom Land Steiermark und der EU im Rahmen des Regionalförderungsprogrammes EFRE.


Weitere Informationen:

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.153001  - Originalpublikation
http://dx.doi.org/10.1039/C4CP03135K  - Weitere Arbeit der Gruppe zu diesem Thema

Mag. Barbara Gigler | Technische Universität Graz

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wieso Radium-Monofluorid den Blick ins Universum fundamental verändern kann
28.05.2020 | Universität Kassel

nachricht Verlustfreie Stromleitung an den Kanten
25.05.2020 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt

Eine Forschungskooperation der Universität Konstanz unter Federführung von Professor Dr. Christof Hauck (Fachbereich Biologie) mit Beteiligung des Klinikum Konstanz, eines Konstanzer Diagnostiklabors und des Konstanzer Unternehmens myPOLS Biotec, einer Ausgründung aus der Arbeitsgruppe für Organische Chemie / Zelluläre Chemie der Universität Konstanz, hat ein neuartiges Covid-19-Schnelltestverfahren entwickelt. Dieser Test ermöglicht es, Ergebnisse in der Hälfte der Zeit zu ermitteln – im Vergleich zur klassischen Polymerase-Ketten-Reaktion (PCR).

Die frühe Identifikation von Patienten, die mit dem neuartigen Coronavirus (SARS-CoV-2) infiziert sind, ist zentrale Voraussetzung bei der globalen Bewältigung...

Im Focus: Textilherstellung für Weltraumantennen startet in die Industrialisierungsphase

Im Rahmen des EU-Projekts LEA (Large European Antenna) hat das Fraunhofer-Anwendungszentrum für Textile Faserkeramiken TFK in Münchberg gemeinsam mit den Unternehmen HPS GmbH und Iprotex GmbH & Co. KG ein reflektierendes Metallnetz für Weltraumantennen entwickelt, das ab August 2020 in die Produktion gehen wird.

Beim Stichwort Raumfahrt werden zunächst Assoziationen zu Forschungen auf Mond und Mars sowie zur Beobachtung ferner Galaxien geweckt. Für unseren Alltag sind...

Im Focus: Biotechnologie: Enzym setzt durch Licht neuartige Reaktion in Gang

In lebenden Zellen treiben Enzyme biochemische Stoffwechselprozesse an. Auch in der Biotechnologie sind sie als Katalysatoren gefragt, um zum Beispiel chemische Produkte wie Arzneimittel herzustellen. Forscher haben nun ein Enzym identifiziert, das durch die Beleuchtung mit blauem Licht katalytisch aktiv wird und eine Reaktion in Gang setzt, die in der Enzymatik bisher unbekannt war. Die Studie ist in „Nature Communications“ erschienen.

Enzyme – in jeder lebenden Zelle sind sie die zentralen Antreiber für biochemische Stoffwechselprozesse und machen dort Reaktionen möglich. Genau diese...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: Innovative Sensornetze aus Satelliten

In Würzburg werden vier Kleinst-Satelliten auf ihren Start vorbereitet. Sie sollen sich in einer Formation bewegen und weltweit erstmals ihre dreidimensionale Anordnung im Orbit selbstständig kontrollieren.

Wenn ein Gegenstand wie der Planet Erde komplett ohne tote Winkel erfasst werden soll, muss man ihn aus verschiedenen Richtungen ansehen und die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wie sich Nervenzellen zum Abruf einer Erinnerung gezielt reaktivieren lassen

29.05.2020 | Biowissenschaften Chemie

Wald im Wandel

29.05.2020 | Agrar- Forstwissenschaften

Schwarzer Stickstoff: Bayreuther Forscher entdecken neues Hochdruck-Material und lösen ein Rätsel des Periodensystems

29.05.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics