Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kaiserslauterer Physiker weisen für Magnon-Quantenteilchen Supraströme bei Raumtemperatur nach

02.08.2016

Supraleiter zeigen faszinierende Quantenphänomene. Allerdings treten diese in der Regel nur bei Temperaturen weit unter dem Gefrierpunkt auf. Für bestimmte Quantenteilchen, die Magnonen, haben Physiker um Professor Dr. Burkard Hillebrands von der TU Kaiserslautern einen neuartigen Strom von Magnonen, einen Suprastrom, nun erstmals bei Raumtemperatur nachgewiesen. An der Arbeit waren auch theoretische Physiker aus Israel und der Ukraine beteiligt. Die Erkenntnisse könnten helfen, etwa die Datenverarbeitung wesentlich leistungsfähiger machen. Die Studie wurde in der renommierten Fachzeitschrift „Nature Physics“ veröffentlicht.

Das Verarbeiten von Daten schreitet rasant voran: Die Übertragung und die Speicherung müssen mit neuen Technologien mithalten und immer schneller werden – weltweit sind Forscher daher bemüht, neue Wege dafür zu finden.


Professor Dr. Burkhard Hillebrands, TU Kaiserslautern

Koziel/ TU Kaiserslautern

„Makroskopische Quantenzustände können hierbei künftig eine Rolle spielen“, sagt Professor Hillebrands. „Bei diesen faszinierenden Phänomenen können die Gesetze der Quantenwelt auf größere Strukturen übertragen werden. Das Phänomen der Supraleitung und damit Supraströme sind das vielleicht bekannteste Beispiel.“

Um die Gesetzmäßigkeiten der Quantenwelt bei Supraströmen besser zu verstehen, setzten die Kaiserslauterer Forscher zusammen mit Kollegen aus der Ukraine und Israel in ihrer Arbeit auf sogenannte Bose-Einstein-Kondensate. Diese entstehen beispielsweise beim Abkühlen von Gasen bei ultratiefen Temperaturen.

„Sie entstehen sowohl aus realen Gasen als auch aus Gasen von Quasiteilchen, wie zum Beispiel Magnonen“, so der Physiker weiter, „wobei uns die Magnonen den Zugang zu bei Raumtemperatur ermöglichen, wo es sich viel leichter experimentieren lässt“.

Hillebrands und sein Team arbeiten daher intensiv mit diesen Teilchen, für die es seit Längerem einen eigenen Forschungsbereich gibt: die Magnonik.

„Magnonen sind die Quantenteilchen von Wellen in magnetischen Materialien, den Spinwellen. Diese sind analog zu Photonen, den Quantenteilchen von elektromagnetischen Wellen, wie zum Beispiel das Licht. Mit Magnonen kann man sehr gut Informationen transportieren, weil sie zum Beispiel leicht zu erzeugen, zu ändern und zu detektieren sind und sehr wenig Energie verbrauchen“, so der Physiker. Die Kaiserslauterer Forscher nutzen in ihren Arbeiten daher diese Teilchen als Informationsträger und -überträger.

Den Durchbruch erzielten die Kaiserslauterer nun durch die Erzeugung von Raumtemperatur-Supraströmen von Magnonen in einem Bose-Einstein-Kondensat. Dies eröffnet ein weites Anwendungsfeld, nicht nur in der Grundlagenforschung, sondern auch mit großer Relevanz für künftige Datentechnologien, etwa als Alternative für die derzeitigen Halbleiter-basierte Technologien. Das Verarbeiten und Speichern von Daten könnte so wesentlich leistungsfähiger werden.

Die Studie wurde in der renommierten Fachzeitschrift Nature Physics veröffentlicht: „Supercurrent in a room-temperature Bose–Einstein magnon condensate“, Dmytro A. Bozhko, Alexander A. Serga, Peter Clausen, Vitaliy I. Vasyuchka, Frank Heussner, Gennadii A. Melkov, Anna Pomyalov, Victor S. L’vov and Burkard Hillebrands, Nature Physics 2016, DOI: http://dx.doi.org/10.1038/nphys3838

Hintergrund: Die Forschungsergebnisse sind zentrale Vorarbeiten für den von Hillebrands kürzlich eingeworbenen ERC Advanced Grant „SuperMagnonics“ der Europäischen Union. Die am Fachbereich Physik der TU Kaiserslautern durchgeführten Arbeiten sind eingebettet in das Landesforschungszentrum OPTIMAS der Forschungsinitiative Rheinland-Pfalz. In dem Zentrum gehen Forscherinnen und Forscher den Wechselwirkungen von Licht, Magnetismus und Materie auf den Grund.

Weitere Informationen:

http://optimas.uni-kl.de/home/

Katrin Müller | Technische Universität Kaiserslautern

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Magnetische Sensoren ermöglichen richtungsabhängige Temperaturmessung
19.10.2018 | Universität Greifswald

nachricht Mission BepiColombo: Jenaer Sensor hilft, Geheimnisse des Merkur zu entschlüsseln
19.10.2018 | Leibniz-Institut für Photonische Technologien e. V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics