Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im Schlepptau – wie Regen entsteht

29.09.2017

Forscher vom Göttinger Max-Planck-Institut für Dynamik und Selbstorganisation zeigen erstmalig in einem Modellsystem wie fallende Regentropfen kleinere Regentropfen nach sich ziehen

Die Ursache von abrupten Regengüssen ist für Wissenschaftler, die die Atmosphäre untersuchen, nach wie vor ein Rätsel, unter anderem auch, weil echte Wolken für aufwändige Laborexperimente zu kompliziert sind.


Wolken können sehr unterschiedliche Eigenschaften haben - nicht aus jeder Wolke fällt Regen. Tully Beg, Renvyle, Irland

(c) 2017 C. Hoffrogge

Ein Forscherteam vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen hat in einer nur wenige Zentimeter großen Zelle unter Hochdruckbedingungen eine künstliche Atmosphäre erzeugt, um darin die Entstehung und Dynamik von Wolken sowie die Erzeugung von Regen zu untersuchen.

Sie fanden heraus, dass ein kalter Tropfen, der durch ihre Modellatmosphäre fällt, in seinem Gefolge einen Strom von Mikrotröpfchen erzeugt und nach sich zieht. In echten Wolken könnten solche Tropfen bzw. Hagelkörner neue Mikrotröpfchen generieren und somit die Regenmenge und Regenintensität entscheidend beeinflussen. Diesen Vorgang zu untersuchen ist wichtig, um die Entwicklung von Wolken zu verstehen und die Regenwahrscheinlichkeit besser vorhersagen zu können.

Kontrolliert: „Wolkenimpfung“

Aufgrund vieler miteinander wirkender Elemente ist es sehr schwierig, Wetter, Wolken und Regen im Computer zu simulieren oder in kontrollierten Laborexperimenten zu untersuchen. Wolken- und Regenforscher haben sich daher weitgehend auf Feldmessungen und Feldexperimente verlassen. Beispielsweise wurden in den 50er Jahren Experimente gemacht, bei denen Trockeneisgranulate in Wolken fallen gelassen wurden, um Ströme von Regen zu erzeugen.

Bei diesen Untersuchungen können entscheidende Parameter allerdings nicht gezielt variiert werden, um deren Einfluss zu benennen. Die Erklärung wie und warum diese „Wolkenimpfung“ Regen erzeugt, blieb bisher offen. Einem Team um Eberhard Bodenschatz vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen ist es jetzt erstmalig gelungen, Wolken und Regen in einer nur wenige Zentimeter großer Hochdruckzelle zu erzeugen.

Um die Erdatmosphäre erfolgreich nachzuahmen benutzten die Göttinger Forscher eine Mischung aus Schwefelhexafluorid (SF6) und Helium (He), welches sie zwischen zwei horizontale Platten mit etwa 2 cm Abstand füllten. Über Spiegel konnte die Strömung in der Zelle von der Seite beobachtet werden. In diesem System spielte das SF6 die Rolle des atmosphärischen Wassers, welches je nach Temperatur und Druck entweder flüssig oder gasförmig ist. Das Helium spielte die Rolle der anderen Gase in der Atmosphäre, wie Stickstoff und Sauerstoff.

Nachgebaute Atmosphäre

Die Forscher erhitzten die untere Platte, die obere Platte kühlten sie. „Wir regeln den Druck so, dass SF6 sowohl als Flüssigkeit als auch als Gas vorkommt. Flüssiges SF6 sammelt sich an der unteren warmen Platte und bildet eine Schicht, ähnlich einer Wasserfläche auf der Erde. Darüber bildete sich eine gasförmigen Schicht aus He und SF6. In dieser Konfiguration simuliert das Experiment ein Meer oder See, von dem stetig Wasser verdampft und nach oben in kühlere Bereiche steigt.“, erläutert Prasanth Prabhakaran die Idee. Im Experiment kondensierte das aufsteigende SF6 an der kalten oberen Platte und regnete als kalte Tropfen wieder ab.

Freier Fall mit Gefolge

Mit Hilfe einer Hochgeschwindigkeitskamera konnten die Forscher die fallenden Tropfen auf ihrem Weg durch die wärmere Gas-Schicht verfolgen. Sie beobachteten dabei, dass sich hinter den großen Tropfen viele neue kleine Mikrotröpfchen bildeten. Diese Tröpfchen entstehen, so erklären die Forscher, weil der kalte Tropfen beim Fallen die mit SF6 gesättigte Atmosphäre lokal leicht abkühlt, was zu einer Übersättigung führt und somit flüssiges SF6 als kleine Mikrotröpfchen auskondensiert. Ihre Hypothese unterstützt das Team mit thermodynamischen Berechnungen.

Die Forscher vermuten, dass ein ähnlicher Mechanismus bei der Bildung von Wolken und Regen eine wichtige Rolle spielt. Für Bedingungen, wie sie in der Atmosphäre vorkommen, rechneten sie aus, dass sich vor allem bei sehr großen Regentropfen und Hagelkörnern kleine Mikrotröpfchen in ihrem Nachlauf bilden können.

Dies wiederum hätte entscheidende Auswirkung auf die Wolkendynamik und somit auf die Niederschlagsintensität. Hierfür ist ihrer Meinung nach weitere Forschung notwendig, da die Atmosphäre mit ihren turbulenten Bewegungen und starken Winden komplexer ist als das Laborsystem. Denn auch Staub und andere Partikel spielen bei der Tröpfchen-Bildung in der Atmosphäre eine Schlüsselrolle, während die Tröpfchen in den Experimenten hiervon nicht beeinflusst wurden.

Wolken im Labor

In einer Variation des Experiments wurde die Menge an SF6 so verringert, dass es zwar an der oberen Platte kondensiert, sich jedoch an der unteren warmen Platte keine flüssige Schicht ausbildet. In diesem Fall war der Temperaturgradient in der Gasschicht größer und die erzeugten Mikrotröpfchen formten eine stabile horizontale Schicht, ähnlich einer Wolke. Oberhalb dieser Schicht bildeten sich die Mikrotröpfchen, da hier die Atmosphäre kälter und mit „Feuchtigkeit“ übersättigt war. Darunter war die Atmosphäre wärmer und untersättigt, so dass die Mikrotröpfchen verdampften.

Für Eberhard Bodenschatz liefert die Arbeit "ein klares Beispiel dafür, wie uns Laborversuche von idealisierten Problemen helfen können, atmosphärische Prozesse besser zu verstehen. So können wir zukünftig die Dynamik und Selbstorganisation bei der Wolkenbildung genauer nachvollziehen.“

Weitere Informationen:

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.128701 Original-Publikation

Carolin Hoffrogge | Max-Planck-Institut für Dynamik und Selbstorganisation

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Physiker der Universität Rostock schaffen erstmals Licht, das sich wie exotische Elementarteilchen verhält
10.12.2019 | Universität Rostock

nachricht Geminiden - Die Wünsch-dir-was-Sternschnuppen vor Weihnachten
09.12.2019 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Graphen-Nanostrukturen magnetisch werden

Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.

Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Geminiden - Die Wünsch-dir-was-Sternschnuppen vor Weihnachten

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde (VdS) und des Hauses der Astronomie in Heidelberg - Die Geminiden, die Mitte Dezember zu sehen sind, sind der "zuverlässigste" der großen Sternschnuppen-Ströme mit bis zu 120 Sternschnuppen pro Stunde. Leider stört in diesem Jahr der Mond zur besten Beobachtungszeit.

Sie wurden nach dem Sternbild Zwillinge benannt: Die „Geminiden“ sorgen Mitte Dezember immer für ein schönes Sternschnuppenschauspiel. In diesem Jahr sind die...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Das 136 Millionen Atom-Modell: Wissenschaftler simulieren Photosynthese

Die Umwandlung von Sonnenlicht in chemische Energie ist für das Leben unerlässlich. In einer der größten Simulationen eines Biosystems weltweit haben Wissenschaftlerinnen und Wissenschaftler diesen komplexen Prozess an einem Bestandteil eines Bakteriums nachgeahmt – am Computer, Atom um Atom. Die Arbeit, die jetzt in der renommierten Fachzeitschrift „Cell“ veröffentlicht wurde, ist ein wichtiger Schritt zum besseren Verständnis der Photosynthese in einigen biologischen Strukturen. An der internationalen Forschungskooperation unter Leitung der University of Illinois war auch ein Team der Jacobs University Bremen beteiligt.

Das Projekt geht zurück auf eine Initiative des inzwischen verstorbenen, deutsch-US-amerikanischen Physikprofessors Klaus Schulten von der University of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungsnachrichten

Was Vogelgrippe in menschlichen Zellen behindert

10.12.2019 | Biowissenschaften Chemie

Schäden im Leichtbau erkennen durch Ultraschallsensoren

10.12.2019 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics