Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017

Wissenschaftler des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) konnten mit Kollegen aus Deutschland und den USA zeigen, dass sich in den Eisriesen unseres Sonnensystems „Diamantregen“ bildet. Mit dem ultrastarken Röntgenlaser und weiteren Anlagen des Stanford Linear Accelerator Centers (SLAC) in Kalifornien simulierten sie Bedingungen wie im Inneren der kosmischen Giganten. Dadurch konnten die Forscher erstmals in Echtzeit die Aufspaltung von Kohlenwasserstoff und die Umwandlung des Kohlenstoffes in Diamant beobachten. Ihre Ergebnisse haben sie in der Fachzeitschrift „Nature Astronomy“ (DOI: 10.1038/s41550-017-0219) veröffentlicht.

Ein fester Kern, den dichte Schichten „Eis“ umhüllen – so sieht das Innenleben von Planeten, wie Neptun oder Uranus, aus. Dieses kosmische „Eis“ setzt sich vor allem aus Kohlenwasserstoffen, Wasser und Ammoniak zusammen.


Ein Forscherteam konnte zeigen, dass sich im Inneren riesiger Eisplaneten, wie Neptun, Verbindungen aus Kohlenwasserstoff auftrennen. Der Kohlenstoff verwandelt sich dabei in einen „Diamantregen“.

Greg Stewart / SLAC National Accelerator Laboratory

Seit langem spekulieren Astrophysiker, dass die extrem hohen Drücke, die etwa 10.000 Kilometer unter der Oberfläche solcher Planeten vorherrschen, den Kohlenwasserstoff auftrennen. Dabei bilden sich Diamanten, die weiter ins Innere sinken. „Bislang konnte dieser glitzernde Niederschlag aber nicht direkt experimentell beobachtet werden“, erzählt Dr. Dominik Kraus vom HZDR.

Genau das konnte der Leiter einer Helmholtz-Nachwuchsgruppe mit einem internationalen Team nun jedoch ändern. „In unseren Untersuchungen haben wir eine spezielle Form von Plastik – Polystyrol, das auch aus einem Mix von Kohlen- und Wasserstoff aufgebaut ist – Bedingungen ausgesetzt, die dem Innenleben von Neptun und Uranus ähneln.“

Wenn die Schockwellen durch die Probe rasen

Um das zu erreichen, schickten sie durch die Proben zwei Schockwellen, die sie mit einem extrem starken optischen Laser in Kombination mit der SLAC-Röntgenlaserquelle Linac Coherent Light Source (LCLS) angeregt hatten. Dadurch pressten sie das Plastik mit einem Druck von rund 150 Gigapascal bei einer Temperatur von rund 5.000 Grad Celsius zusammen. „Die erste, kleinere und langsamere Welle wird dabei von der stärkeren, zweiten überholt“, erläutert Dominik Kraus.

„In dem Moment, in dem sich beide Wellen überschneiden, bilden sich die meisten Diamanten.“ Da dies nur Bruchteile von Sekunden dauert, nutzten die Forscher die ultraschnelle Röntgenbeugung, die ihnen Momentaufnahmen von der Entstehung der Diamanten und der chemischen Prozesse lieferte. „Die Experimente zeigen, dass sich fast alle Kohlenstoff-Atome in nanometergroße Diamantstrukturen zusammenschließen“, fasst der Dresdner Forscher zusammen.

Ausgehend von den Ergebnissen vermuten die Autoren der Studie, dass die Diamanten auf Neptun und Uranus viel größere Strukturen annehmen und wahrscheinlich über tausende Jahre langsam in den Planetenkern hinabsinken. „Aus unseren Erkenntnissen können wir außerdem Informationen gewinnen, um den Aufbau von Exoplaneten besser zu verstehen“, gibt Kraus einen Ausblick.

Bei diesen kosmischen Giganten außerhalb unseres Sonnensystems können Forscher vor allem zwei Kenngrößen messen: die Masse, die sich aus Positionsschwankungen des Muttersterns ergibt, und den Radius, den Astronomen aus dem Schatten ableiten, der sich bildet, wenn der Planet einen Stern passiert. Das Verhältnis zwischen den beiden Größen liefert Anhaltspunkte über den chemischen Aufbau, zum Beispiel ob sich der Planet aus leichten oder schweren Elementen zusammensetzt.

„Und die chemischen Prozesse im Inneren verraten uns wiederum Aspekte über entscheidende Eigenschaften der Planeten“, fährt Dominik Kraus fort. „Dadurch können wir die Planentenmodelle verbessern. Wie unsere Untersuchungen zeigen, sind Simulationen hier bislang nicht exakt.“

Neben den astrophysikalischen Erkenntnissen könnten die Versuche aber auch einen praktischen Nutzen haben. So werden Nano-Diamanten, wie sie in den Experimenten entstehen, zum Beispiel für elektronische Instrumente und medizinische Verfahren, aber auch als Schneidstoffe in der industriellen Fertigung verwendet. Derzeit läuft die Herstellung hauptsächlich über Sprengungen. Die Produktion mit Lasern könnte ein Verfahren ermöglichen, dass sauberer und leichter zu kontrollieren ist.

Neben den HZDR- und SLAC-Forschern waren an den Untersuchungen auch Wissenschaftler der University of California in Berkeley, des Lawrence Livermore National Laboratory, des Lawrence Berkeley National Laboratory, des GSI Helmholtzzentrums für Schwerionenforschung, der Osaka Universität, der TU Darmstadt, des Europäischen Röntgenlasers XFEL, der University of Michigan sowie der University of Warwick beteiligt.

Publikation:
D. Kraus, J. Vorberger, A. Pak, N. J. Hartley, L. B. Fletcher, S. Frydrych, E. Galtier, E J. Gamboa, D. O. Gericke, S. H. Glenzer, E. Granados, M. J. MacDonald, A. J. MacKinnon, E. E. McBride, I. Nam, P. Neumayer, M. Roth, A. M. Saunders, A. K. Schuster, P. Sun, T. van Driel, T. Döppner, R. W. Falcone: Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions, in Nature Astronomy, 2017 (DOI: 10.1038/s41550-017-0219)

Weitere Informationen:
Dr. Dominik Kraus
Institut für Strahlenphysik am HZDR
Tel. +49 351 260-3657 | E-Mail: d.kraus@hzdr.de

Medienkontakt:
Simon Schmitt | Wissenschaftsredakteur
Tel. +49 351 260-3400 | E-Mail: s.schmitt@hzdr.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Zur Beantwortung dieser wissenschaftlichen Fragen betreibt das HZDR große Infrastrukturen, die auch von externen Messgästen genutzt werden: Ionenstrahlzentrum, Hochfeld-Magnetlabor Dresden und ELBE-Zentrum für Hochleistungs-Strahlenquellen. Das HZDR ist Mitglied der Helmholtz-Gemeinschaft, hat fünf Standorte (Dresden, Freiberg, Grenoble, Hamburg, Leipzig) und beschäftigt rund 1.100 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Simon Schmitt | Helmholtz-Zentrum Dresden-Rossendorf
Weitere Informationen:
http://www.hzdr.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt
16.08.2018 | Universität Bern

nachricht Leibniz-IWT an Raumfahrtmission beteiligt: Bremer unterstützen Experimente im All
14.08.2018 | Leibniz-Institut für Werkstofforientierte Technologien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schatzkammer Datenbank: Digitalisierte Schwingfestigkeitskennwerte sparen Entwicklungszeit

16.08.2018 | Informationstechnologie

Interaktive Software erleichtert Design komplexer Gussformen

16.08.2018 | Informationstechnologie

Fraunhofer HHI entwickelt Quantenkommunikation für jedermann im EU-Projekt UNIQORN

16.08.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics