Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hütchenspiel im Mikrokosmos

17.10.2017

Ein internationales Forscherteam hat einen neuen Weg vorgeschlagen, über den sich Atome oder Ionen durch Austausch ihrer Positionen ununterscheidbar machen lassen. Diese sollten dann exotische Eigenschaften aufweisen. An der Studie waren Physiker der Universität Bonn, der Österreichischen Akademie der Wissenschaften sowie der University of California beteiligt. Die Publikation ist in den „Physical Review Letters“ erschienen.

Stellen Sie sich vor, Sie schauen bei einem Hütchenspiel zu – und zwar bei einer ganz einfachen Variante: Ihr Spielpartner ist kein gewiefter Trickbetrüger, sondern grundehrlich. Und auf dem Tisch vor ihm stehen keine drei Becher, sondern nur zwei. Diese sind aus schwarzem Plastik und sehen sich so verflixt ähnlich, dass Sie sie beim besten Willen nicht auseinanderhalten können.


Dr. Andrea Alberti vom Institut für Angewandte Physik der Universität Bonn.

(c) Foto: Jose C. Gallego


Prof. Dr. Dieter Meschede vom Institut für Angewandte Physik der Universität Bonn.

© Foto: Privat

Ihr Mitspieler beginnt nun, beide Gefäße hin und her zu schieben. Er ist ebenso schnell wie geschickt. Dennoch gelingt es Ihnen mit ein wenig Konzentration, seinen Rochaden zu folgen. Am Ende können Sie korrekt angeben, welcher der Becher ursprünglich links gestanden hatte und welcher rechts.

Was aber wäre passiert, wenn Sie sich beim Verschieben der Hütchen hätten umdrehen müssen? In diesem Fall hätten Sie wohl raten müssen: Für Sie sehen beide Becher schließlich völlig identisch aus. Natürlich sind sie das nicht wirklich: Becher 1 bleibt Becher 1, egal wie häufig er mit Becher 2 seinen Platz wechselt.

In der Welt der kleinsten Dinge lassen sich aber Experimente durchführen, bei denen die Sache mit der Identität nicht so klar ist. Ein solches Hütchenspiel im Mikrokosmos haben nun die Physiker des Instituts für Angewandte Physik (IAP) zusammen mit ihren Kollegen aus Österreich und den USA vorgeschlagen.

Zur gleichen Zeit an verschiedenen Orten

Die Stelle der Becher übernehmen in diesem Fall zwei Atome, die sich in exakt demselben atomaren Zustand befinden. „Derartige Atome lassen sich mit heutiger Technik herstellen“, erklärt Prof. Dr. Dieter Meschede vom IAP. „Sie sind tatsächlich vollkommen gleich und unterscheiden sich lediglich durch die Position, an der sie sich befinden.“

Als Hütchenspieler in der Welt der Atome hat man gewisse Freiheiten. Dort gibt es zum Beispiel das quantenmechanische Phänomen, dass sich Teilchen zur selben Zeit an zwei verschiedenen Orten aufhalten können. Durch eine trickreiche Nutzung dieses Effekts lässt sich erreichen, dass Atom 1 und Atom 2 mit einer gewissen Wahrscheinlichkeit ihre Plätze tauschen, ohne dass irgendjemand etwas davon mitbekommt.

Anders gesagt: Nach dem Experiment weiß der Betrachter nicht, ob Atom 1 tatsächlich noch Atom 1 ist oder aber gegen Atom 2 getauscht wurde. Herkömmliche Becher könnte man anhand winzigster Unterschiede – zum Beispiel einer mikroskopisch kleinen Delle – immer noch sicher unterscheiden. Für identisch präparierte Atome gilt das nicht; sie sind exakt gleich. „Nach dem Experiment lässt sich daher nicht mehr – in welcher Form auch immer – herausfinden, welches von beiden Atom 1 ist und welches Atom 2“, erklärt Dr. Andrea Alberti vom IAP.

Das hat auch philosophische Konsequenzen. Dem deutschen Philosophen Gottfried Wilhelm Leibniz (1646-1716) wird die Erkenntnis zugeschrieben, dass zwei Objekte dann identisch sind, wenn sich zwischen ihnen kein Unterschied feststellen lässt. In diesem Sinne ist bei den vertauschten Atomen ein Teil ihrer Individualität verloren gegangen: Sie sind zwei, und doch sind sie irgendwie eins.

Erstaunlicherweise sind die beiden nach dem Ortswechsel zudem miteinander „verbandelt“: Bestimmte Eigenschaften beider Teilchen wie der Spin – das ist die Drehrichtung eines Atoms – hängen nun voneinander ab. Beobachtet man den Spin von Atom 1, so hat man sofort den Spin von Atom 2 ebenfalls bestimmt. „Das ist, als würde man unabhängig voneinander zwei Münzen werfen“, erläutert Andrea Alberti. „Wenn die eine Kopf zeigt, muss das auch für die andere gelten.“ Physiker sprechen von einer „Verschränkung“.

Die IAP-Forscher arbeiten zurzeit daran, ihren theoretischen Vorschlag in der Praxis umzusetzen. Das Experiment lässt sich in abgewandelter Form auch mit anderen Teilchen durchführen, zum Beispiel mit Ionen – einen Weg, den ihre Kollegen am Innsbrucker Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften gehen wollen. „Wir erwarten uns von diesen Versuchen, in denen wir exakt zwei Quantenteilchen sehr präzise kontrollieren, neue Erkenntnisse über das fundamentale quantenmechanische Austauschprinzip“, hofft Alberti.

Publikation: C. F. Roos, A. Alberti, D. Meschede, P. Hauke und H. Häffner: Revealing Quantum Statistics with a Pair of Distant Atoms; Physical Review Letters

Kontakt:

Dr. Andrea Alberti
Institut für Angewandte Physik (IAP)
Universität Bonn
Tel. 0228/733471
E-Mail: alberti@iap.uni-bonn.de

Weitere Informationen:

http://dx.doi.org/10.1103/PhysRevLett.119.160401 Publikation

Johannes Seiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Berichte zu: Angewandte Physik Atom IAP Mikrokosmos Phänomen spin

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kosmische Schlange
20.11.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht InSight: Touchdown auf dem Mars
19.11.2018 | Max-Planck-Institut für Sonnensystemforschung

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop-Transport von Frachten in Nanomaschinen

Max-Planck-Forscher entdecken die Nanostruktur von molekularen Zügen und den Grund für reibungslosen Transport in den „Antennen der Zelle“

Eine Zelle bewegt sich ständig umher, tastet ihre Umgebung ab und sendet Signale an andere Zellen. Das ist wichtig, damit eine Zelle richtig funktionieren kann.

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Für eine neue Generation organischer Leuchtdioden: Uni Bayreuth koordiniert EU-Forschungsnetzwerk

20.11.2018 | Förderungen Preise

Nonstop-Transport von Frachten in Nanomaschinen

20.11.2018 | Biowissenschaften Chemie

Wie sich ein Kristall in Wasser löst

20.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics