Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gravitationswellen gleich dreimal gemessen

29.09.2017

Die kosmischen Kräuselungen gehen den beiden Ligo-Observatorien in den USA und dem italienischen Virgo-Detektor ins Netz

Die Beobachtung von Gravitationswellen wird allmählich zur Routine: Erneut haben Forscher diese von Albert Einstein vor hundert Jahren vorhergesagten Kräuselungen der Raumzeit registriert. Doch dieses Mal war neben den beiden US-amerikanischen Advanced-Ligo-Observatorien, die alle drei bisher registrierten Gravitationswellen entdeckt hatten, auch der italienische Virgo-Detektor im Spiel. Am 14. August um 12:30:43 Uhr MESZ beobachteten sämtliche drei Anlagen das Signal GW170814, das durch die Verschmelzung von zwei schwarzen Löchern erzeugt wurde.


Signal aus dem All: Zwei schwarze Löcher mit 31 und 25 Sonnenmassen verschmelzen und senden dabei Gravitationswellen aus. Die Farben charakterisieren die Stärke des Feldes.

© Numerisch-relativistische Simulation: S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), Simulating eXtreme Spacetimes Project; Wissenschaftliche Visualisierung: T. Dietrich (Max-Planck-Institut für Gravitationsphysik), R. Haas (NCSA)


Dreifacher Beweis: Das Signal am 14. August wurde von den beiden Ligo-Observatorien in Hanford und Livingston sowie dem Virgo-Detektor fast zur selben Zeit gemessen.

© The LIGO Scientific Collaboration and the Virgo Collaboration

Große Freude herrscht auch bei den Wissenschaftlern am Max-Planck-Institut für Gravitationsphysik an den Standorten Hannover und Potsdam. „Die Gravitationswellen-Astronomie entwickelt sich rasant. Mit einem dritten großen Detektor können wir die Position und die Entfernung der Quellen von Gravitationswellen sehr viel genauer bestimmen“, sagen übereinstimmend Alessandra Buonanno und ihre beiden Direktorenkollegen Bruce Allen und Karsten Danzmann. „So können wir effizienter nach elektromagnetischen sowie Partikel-Signalen der Quellen suchen und gemeinsam das neue Zeitalter der Multi-Messenger-Astronomie vorantreiben.“

Im Fall von GW170814 suchten insgesamt 25 Observatorien im elektromagnetischen Spektrum, und zwar im Bereich von Gamma- und Röntgenstrahlung, sichtbarem Licht, Infrarotstrahlung und Radiowellen, ebenso nach Neutrinoemissionen. Zwar fand keines der Instrumente ein Signal – was aber den Erwartungen für stellare schwarze Löcher entspricht.

Die beiden kosmischen Monster besaßen vor ihrer Vereinigung 31 und 25 Sonnenmassen. Das resultierende schwarze Loch hat 53 Sonnenmassen – drei Sonnenmassen wurden in Gravitationswellen umgesetzt. Das Signal erreichte den Ligo-Detektor in Livingston rund acht Millisekunden vor dem in Hanford und etwa 14 Millisekunden vor Virgo in der Toskana. Aus der Kombination dieser Laufzeitunterschiede ließ sich die Richtung zur Quelle berechnen.

So gelang es, GW170814 auf einen Bereich von 60 Quadratgrad am Südhimmel zwischen den Sternbildern Eridanus und Pendeluhr zu lokalisieren. Der Vergleich der gemessenen Wellenform mit Vorhersagen der Allgemeinen Relativitätstheorie wiederum lieferte eine Entfernung von ungefähr 1,8 Milliarden Lichtjahren.

An Entdeckung und Datenauswertung beteiligt waren auch dieses Mal Wissenschaftler aus dem Max-Planck-Institut für Gravitationsphysik in Potsdam und Hannover. So betreibt Karsten Danzmann in der GEO-Kollaboration – einem Team von Forschern der Max-Planck-Gesellschaft, der Leibniz Universität und aus Großbritannien – seit Mitte der 1990er-Jahre den Gravitationswellen-Detektor GEO600 südlich von Hannover. Die Anlage ist ein Entwicklungszentrum für neuartige und fortschrittliche Technologien.

Zusammen mit dem Laser Zentrum Hannover entwarfen, bauten und installierten Max-Planck-Wissenschaftler die Hochleistungslaser im Herzen der Ligo- und Virgo-Instrumente. Entscheidende Verbesserungen im optischen Messprinzip wie Leistungs- und Signalüberhöhung wurden dabei zuerst bei GEO600 demonstriert.

Mitglieder der Abteilung „Beobachtungsbasierte Relativität und Kosmologie“ am Max-Planck-Institut in Hannover analysierten Virgo-Daten, um die Wahrscheinlichkeit abzuschätzen, dass zufällige Rauschschwankungen das schwache Signal verursachten. Sie fanden heraus, dass das Signal mit mehr als 99-prozentiger Wahrscheinlichkeit echt ist. Außerdem wurden instrumentelle Artefakte in den Ligo-Daten behoben und die Empfindlichkeit des Detektors signifikant gesteigert.

Zudem entwickelte diese Abteilung viele der Algorithmen für die Software zur Datenanalyse. Die Untersuchungen wurden etwa genutzt, um die statistische Signifikanz von GW170814 und dessen Parameter zu bestimmen. Außerdem trug der Großrechner Atlas, den die Abteilung in Hannover betreibt, rund 40 Prozent der Rechenleistung für die derzeit laufende Datenanalyse des zweiten Beobachtungslaufs „O2“ bei.

Wie bei vorherigen wegweisenden Gravitationswellen-Beobachtungen spielte die Abteilung „Astrophysikalische und Kosmologische Relativität“ am Potsdamer Max-Planck-Institut eine entscheidende Rolle bei der Beobachtung und Interpretation von GW170814 – so durch Entwicklung und Nutzung der präzisesten Wellenformmodelle, welche die Quelle von GW170814 sowohl aufspürten als auch charakterisierten.

Zudem berücksichtigten die Modelle physikalische Effekte wie exzentrische Umlaufbahnen und Gezeitenkräfte bei Neutronensternen. Das Ziel ist, bei zukünftigen Beobachtungen die Entstehung solcher Doppelsternsysteme und Materie bei extremen Bedingungen besser zu verstehen.


Dr. Benjamin Knispel
Presse- und Öffentlichkeitsarbeit

Max-Planck-Institut für Gravitationsphysik, Teilinstitut Hannover, Hannover
Telefon: +49 511 762-19104
E-Mail: benjamin.knispel@aei.mpg.de


Rr. Elke Müller
Max-Planck-Institut für Gravitationsphysik, Potsdam-Golm
Telefon: +49 331 567-7303

Fax: +49 331 567-7298
E-Mail: elke.mueller@aei.mpg.de

Prof. Dr. Bruce Allen
Max-Planck-Institut für Gravitationsphysik, Teilinstitut Hannover, Hannover
Telefon: +49 511 762-17148
E-Mail: bruce.allen@aei.mpg.de

Prof. Dr. Alessandra Buonanno
Max-Planck-Institut für Gravitationsphysik, Potsdam-Golm
Telefon: +49 331 567-7220

Fax: +49 331 567-7298
E-Mail: alessandra.buonanno@aei.mpg.de

Prof. Dr. Karsten Danzmann
Max-Planck-Institut für Gravitationsphysik, Teilinstitut Hannover, Hannover
Telefon: +49 511 762-2356

Fax: +49 511 762-5861
E-Mail: karsten.danzmann@aei.mpg.de

Dr. Benjamin Knispel | Max-Planck-Institut für Gravitationsphysik
Weitere Informationen:
https://www.mpg.de/11491142/gravitationswellen-ligo-virgo

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rasende Elektronen unter Kontrolle
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Kometen als Wasserträger für Exoplaneten
15.11.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt

Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.

Aluminiumlegierungen verfügen über einzigartige Materialeigenschaften und sind unverzichtbare Werkstoffe im Flugzeugbau sowie in der Weltraumtechnik.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

Wer rechnet schneller? Algorithmen und ihre gesellschaftliche Überwachung

12.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Emulsionen masschneidern

15.11.2018 | Materialwissenschaften

LTE-V2X-Direktkommunikation für mehr Verkehrssicherheit

15.11.2018 | Informationstechnologie

Daten „fühlen“ mit haptischen Displays

15.11.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics