Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geometrie eines Elektrons erstmals bestimmt

23.05.2019

Physiker der Universität Basel können erstmals zeigen, wie ein einzelnes Elektron in einem künstlichen Atom aussieht. Mithilfe einer neu entwickelten Methode sind sie in der Lage, die Aufenthaltswahrscheinlichkeit eines Elektrons im Raum darzustellen. Dadurch lässt sich die Kontrolle von Elektronenspins verbessern, die als kleinste Informationseinheit eines zukünftigen Quantencomputers dienen könnten. Die Experimente wurden in «Physical Review Letters» und die Theorie dazu in «Physical Review B» veröffentlicht.

Der Spin eines Elektrons ist ein vielversprechender Kandidat, um als kleinste Informationseinheit (Qubit) eines Quantencomputers genutzt zu werden. Diesen Spin zu kontrollieren, umzuschalten und mit anderen Spins zu koppeln ist eine Herausforderung, an der zahlreiche Forschungsgruppen weltweit arbeiten.


Das Elektron hält sich mit unterschiedlicher Wahrscheinlichkeit an Orten im Quantenpunkt auf (rote Ellipsen). Mithilfe elektrischer Felder lässt sich die Geometrie dieser Wellenfunktion verändern.

Bild: Universität Basel, Departement Physik

Die Stabilität eines einzelnen und die Verschränkung verschiedener Spins hängt unter anderem von der Geometrie der Elektronen ab, die bislang jedoch experimentell nicht zu bestimmen war.

Nur in künstlichen Atomen möglich

Wissenschaftler aus den Teams der Professoren Dominik Zumbühl und Daniel Loss vom Departement Physik und Swiss Nanoscience Institute der Universität Basel haben nun eine Methode entwickelt, mit der sie zum ersten Mal die Geometrie von Elektronen in Quantenpunkten räumlich erfassen können.

Bei einem Quantenpunkt handelt es sich um einen umgrenzten Bereich eines Halbleiters, der etwa tausendmal grösser ist als ein natürliches Atom. Darin befindet sich ein freies Elektron, das nicht in einem Atom gebunden ist, sich aber ähnlich verhält, weshalb Quantenpunkte auch «künstliche Atome» genannt werden.

Das Elektron wird im Quantenpunkt durch elektrische Felder festgehalten. Es bewegt sich jedoch im Raum und hält sich mit unterschiedlichen Wahrscheinlichkeiten, die einer Wellenfunktion entsprechen, an bestimmten Orten innerhalb seiner Falle auf.

Ladungsverteilung gibt Aufschluss

Durch Anlegen von Magnetfeldern verschiedener Stärke und Richtung können die Wissenschaftler mithilfe spektroskopischer Messungen die Energieniveaus im Quantenpunkt ermitteln. Anhand eines von ihnen entwickelten theoretischen Models lässt sich daraus die Aufenthaltswahrscheinlichkeit des Elektrons und damit seine Wellenfunktion mit einer Präzision im Subnanometerbereich bestimmen.

«Vereinfacht lässt sich sagen, dass wir mit dieser Methode erstmals zeigen können, wie ein Elektron aussieht», erklärt Daniel Loss.

Besseres Verständnis und Optimierung

Die Forscher, die eng mit Kollegen aus Japan, der Slowakei und den USA zusammenarbeiten, bekommen damit ein besseres Verständnis für die Korrelation zwischen Geometrie der Elektronen und dem Elektronenspin, der für die Verwendung als Qubit möglichst lange stabil und schnell umschaltbar sein sollte.

«Wir können nicht nur Form und Ausrichtung des Elektrons abbilden, sondern die Wellenfunktion je nach Einstellung der angelegten elektrischen Felder auch steuern. Damit haben wir die Möglichkeit, ganz gezielt die Kontrolle über die Spins zu optimieren», sagt Dominik Zumbühl.

Auch für die Verschränkung mehrerer Spins spielt die räumliche Ausrichtung der Elektronen eine Rolle. Wie bei der Bindung von zwei Atomen zu einem Molekül müssen die Wellenfunktionen zweier Elektronen auf einer Ebene liegen, damit es zu einer erfolgreichen Verschränkung kommt.

Mithilfe der entwickelten Methode lassen sich zahlreiche bisher durchgeführte Untersuchungen besser verstehen und zukünftige optimieren.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Dominik Zumbühl, Universität Basel, Departement Physik, Tel. +41 61 207 36 93, E-Mail: dominik.zumbuhl@unibas.ch

Originalpublikation:

Leon C. Camenzind, Liuqi Yu, Peter Stano, Jeramy D. Zimmerman, Arthur C. Gossard, Daniel Loss, and Dominik M. Zumbühl
Spectroscopy of quantum dot orbitals with in-plane magnetic fields
Physical Review Letters (2019), doi: 10.1103/PhysRevLett.122.207701
https://doi.org/10.1103/PhysRevLett.122.207701

Peter Stano, Chen-Hsuan Hsu, Leon C. Camenzind, Liuqi Yu, Dominik Zumbühl, and Daniel Loss
Orbital effects of a strong in-plane magnetic field on a gate-defined quantum dot
Physical Review B (2019), doi: 10.1103/PhysRevB.99.085308
https://doi.org/10.1103/PhysRevB.99.085308

Reto Caluori | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Berichte zu: Atom Elektron Geometrie Quantenpunkt Qubit Wellenfunktion quantum dot spin

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Etwas lauert im Herzen des Quasars 3C 279
07.04.2020 | Max-Planck-Institut für Radioastronomie

nachricht Quantenphysik: Dispersion der „Bethe Strings” experimentell beobachtet
07.04.2020 | Universität zu Köln

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

Vor ziemlich genau einem Jahr ist das Belle II-Experiment angelaufen. Jetzt veröffentlicht das renommierte Journal Physical Review Letters die ersten Resultate des Detektors. Die Arbeit befasst sich mit einem neuen Teilchen im Zusammenhang mit der Dunklen Materie, die nach heutigem Kenntnisstand etwa 25 Prozent des Universums ausmacht.

Seit etwa einem Jahr nimmt das Belle II-Experiment Daten für physikalische Messungen. Sowohl der Elektron-Positron-Beschleuniger SuperKEKB als auch der...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zacken in der Viruskrone

07.04.2020 | Biowissenschaften Chemie

Auf der Suche nach neuen Antibiotika

07.04.2020 | Biowissenschaften Chemie

Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

07.04.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics