Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fortschritte auf dem Weg zum Verständnis der Neutrino-Eigenschaften

06.09.2019

Um die Vermutung zu belegen, dass Materie ohne Antimaterie erzeugt werden kann, sucht das GERDA-Experiment im Gran Sasso Untergrundlabor nach dem neutrinolosen doppelten Betazerfall. Es hat die weltweit höchste Empfindlichkeit für den Nachweis des gesuchten Zerfalls. Um die Chance einer Entdeckung weiter zu erhöhen, arbeitet das Folgeprojekt LEGEND an einem noch weiter verfeinerten Zerfallsexperiment.

Das Standardmodell der Teilchenphysik ist seit seinen Anfängen nahezu unverändert gültig. Widersprüche zwischen Theorie und Experiment haben sich bislang nur bei Neutrinos gezeigt.


Arbeiten an den Germanium-Detektoren im Reinraum des unterirdischen Labors von Gran Sasso.

J. Suvorov / GERDA

Die Neutrino-Oszillation war dabei die erste Beobachtung, die nicht mit den Vorhersagen übereinstimmte. Sie beweist, dass Neutrinos im Widerspruch zum Standardmodell eine Masse ungleich Null haben. 2015 wurde diese Entdeckung mit dem Nobelpreis ausgezeichnet.

Sind Neutrinos ihre eigenen Antiteilchen?

Hinzu kommt die Vermutung, dass Neutrinos so genannte Majorana-Teilchen sind: Anders als alle anderen Bausteine der Materie könnten sie ihre eigenen Antiteilchen sein. Dies würde auch eine Erklärung dafür liefern, warum es im Universum so viel mehr Materie als Antimaterie gibt.

Zur Überprüfung der Majorana-Vermutung sucht die GERDA-Kollaboration nach dem bisher nicht beobachteten neutrinolosen doppelten Betazerfall im Germanium-Isotop 76-Ge: Dabei wandeln sich zwei Neutronen in einem 76-Ge-Kern gleichzeitig in zwei Protonen um, wobei zwei Elektronen emittiert werden. Dieser Zerfall ist im Standardmodell verboten, da die beiden Antineutrinos – die ausgleichende Antimaterie – fehlen.

Die Technische Universität München (TUM) beteiligt sich seit vielen Jahren intensiv am Projekt GERDA (GERmanium Detector Array). Sprecher des neuen Projekts LEGEND ist Prof. Stefan Schönert, der die TUM-Forschungsgruppe leitet.

Das GERDA Experiment verfügt über die höchste Empfindlichkeit

GERDA ist das erste Experiment auf dem Gebiet, das den störenden Untergrund soweit reduzieren konnte, dass der gesuchte neutrinolose doppelte Betazerfall, sofern er existiert, eine Halbwertszeit von mindestens 10^26 Jahren haben muss, das ist das 10 000 000 000 000 000-fache des Alters des Universums.

Die Physiker wissen, dass Neutrinos mindestens hunderttausendmal mal leichter sind als Elektronen, die nächstschwereren Teilchen. Welche Masse sie genau haben, ist allerdings noch unbekannt und ein weiteres wichtiges Forschungsthema.

Interessanterweise korrespondiert die Halbwertszeit des neutrinolosen doppelten Betazerfalls mit einer speziellen Variante der Neutrino-Masse, der Majorana-Masse. Kombiniert man das neue GERDA-Ergebnis mit denjenigen anderer Doppel-Beta-Zerfallsexperimente, so muss diese Masse sogar mindestens eine Million mal kleiner sein als die des Elektrons. Physikalisch ausgedrückt läge die Masse bei unter 0,07 bis 0,16 eV/c^2 [1].

Keine Widersprüche zu anderen Experimenten

Auch andere Experimente grenzen die Neutrino-Massen ein: Die jüngste Analyse der Planck-Mission kommt für die Summe der Massen der drei Neutrino-Arten auf unter 0,12 – 0,66 eV/c^2.

Das Tritium-Zerfallsexperiment KATRIN am Karlsruher Institut für Technologie (KIT) wird in den kommenden Jahren die Masse des Elektron-Neutrinos mit einer Empfindlichkeit von ca. 0,2 eV/c^2 bestimmen. Die Werte können zwar nicht direkt verglichen werden, sie erlauben es aber, die unterschiedlichen Modelle zu überprüfen. Bislang gibt es keine Widersprüche.

Von GERDA zu LEGEND

Die nun vorgestellten Beobachtungen wurden mit einer Detektormasse von 35,6 kg 76-Ge gemacht. Eine neue internationale Zusammenarbeit unter dem Namen LEGEND wird nun die Detektormasse bis 2021 auf 200 kg 76-Ge erhöhen und die Störungen so weit reduzieren, dass nach fünf Jahren eine Empfindlichkeit von 10^27 Jahren erreicht ist.

Mehr Informationen:

GERDA ist eine internationale europäische Kooperation von mehr als 100 Physikern aus Belgien, Deutschland, Italien, Russland, Polen und der Schweiz. In Deutschland sind die Technischen Universitäten München und Dresden, die Universität Tübingen und die Max-Planck Institute für Physik und für Kernphysik beteiligt. Die finanzielle Unterstützung in Deutschland kommt vom Bundesministerium für Bildung und Forschung (BMBF), von der Deutschen Forschungsgemeinschaft (DFG) über den Exzellenzcluster Universe und den SFB1258 sowie von der Max-Planck-Gesellschaft.

Prof. Schönert erhielt für vorbereitende Arbeiten zum Projekt LEGEND im Jahr 2018 einen ERC Advanced Grant. Für ihre Arbeiten am KATRIN-Experiment erhielt vor wenigen Tagen auch Frau Prof. Susanne Mertens einen ERC-Grant. Sie wird im Rahmen des Experiments nach sogenannten sterilen Neutrinos suchen.

[1] Massen werden in der Teilchenphysik statt in Kilogramm entsprechend der Einsteinschen Gleichung E=m*c^2 in Elektronenvolt [eV] (als Einheit für die Energie)/Lichtgeschwindigkeit zum Quadrat angegeben, da der Zahlenwert sonst unvorstellbar klein würde: 1 eV/c^2 entspricht 1,8 x 10^-37 Kilogramm.

Wissenschaftliche Ansprechpartner:

TU München
Prof. Dr. Stefan Schönert
Tel.: +49 89 289 12511
E-Mail: schoenert@ph.tum.de

TU Dresden
Prof. Dr. Kai Zuber
Tel.: +49 351 463 42250
E-Mail: zuber@physik.tu-dresden.de

Universität Tübingen
Prof. Dr. Josef Jochum
Tel.: +49 7071 297 4453
E-Mail: Josef.Jochum@uni-tuebingen.de

MPI für Physik, München
Prof. Dr. Allen Caldwell
Tel.: +49 89 323 54207
E-Mail: caldwell@mpp.mpg.de

MPI für Kernphysik, Heidelberg
Prof. Dr. Werner Hoffmann
Tel.: +49 6221 516 330
E-Mail: Werner.Hofmann@mpi-hd.mpg.de

Prof. Dr. Manfred Lindner
Tel.: +49 6221 516 800
E-Mail: lindner@mpi-hd.mpg.de

Universität Zürich
Prof. Dr. Laura Baudis
Tel.: +41 44 635 5777
E-Mail: lbaudis@physik.uzh.ch

Originalpublikation:

The GERDA collaboration: Probing Majorana neutrinos with double beta decay
Science, published online on Thursday 5 September, 2019
DOI: 10.1126/science/ aav8613

Weitere Informationen:

https://science.sciencemag.org/lookup/doi/10.1126/science.aav8613 Originalpublikation (sichtbar nach Ablauf der Sperrfrist 05.09.2019, 20.00 Uhr MESZ)
https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/35672/ Pressemeldung auf der TUM-Homepage (sichtbar nach Ablauf der Sperrfrist)
https://www.mpi-hd.mpg.de/gerda/home.html Homepage des Projekts GERDA

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Pulsar-Tomographie dank Einstein
06.09.2019 | Max-Planck-Institut für Radioastronomie

nachricht Silizium als Halbleiter: Siliziumkarbid wäre viel effizienter
05.09.2019 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Garchinger Physiker fotografieren magnetische Polaronen

Garchinger Physikern gelang es erstmals, die magnetische Struktur um mobile Störstellen in einem Kristallgitter, sogenannte magnetische Polaronen, mithilfe eines Quantensimulators abzulichten.

Es war ein magnetischer Moment. Physikern des Max-Planck-Instituts für Quantenoptik (MPQ) war es 2018 erstmals möglich, magnetische Polaronen zu fotografieren...

Im Focus: Chemisches Element Kalium in der Atmosphäre eines Exoplaneten entdeckt

Ein Team von Astronominnen und Astronomen unter der Leitung von AIP-Doktorand Engin Keles entdeckte das chemische Element Kalium in der Atmosphäre eines Exoplaneten erstmals mit hochauflösender Spektroskopie und mit überzeugend starkem Signal. Das Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) am Large Binocular Telescope (LBT) in Arizona wurde zur Untersuchung der Atmosphäre auf dem jupiterähnlichen Exoplaneten HD189733b verwendet.

Die chemischen Elemente Natrium und Kalium werden schon seit den frühesten theoretischen Vorhersagen vor 20 Jahren vor allem in der Atmosphäre von „heißen...

Im Focus: Next Generation Video: WDR und Fraunhofer HHI zeigen deutlich verbesserte Videoqualität auf der IFA 2019

Die Nachfrage nach Videos in höherer Bildauflösung wird in den kommenden Jahren weiter zunehmen. Aus diesem Grund testen der WDR und das Fraunhofer Heinrich-Hertz-Institut HHI in den kommenden Monaten gemeinsam die Möglichkeiten der neuesten Videocodierung nach dem nächsten internationalen Standard VVC/H.266.

VVC/H.266 wird der Nachfolgestandard von HEVC/H.265. Letzterer ist der aktuell modernste und effizienteste Standard zur Videocodierung und kommt zum Beispiel...

Im Focus: Next generation video: WDR and Fraunhofer HHI present significantly improved video quality at IFA 2019

The demand for even higher resolution videos will continue to increase in the coming years. For this reason, the German public service broadcaster WDR and the Fraunhofer Heinrich Hertz Institute HHI will collaborate in the coming months to test the Video Coding possibilities offered by the next international standard VVC/H.266.

VVC/H.266 is the successor standard to HEVC/H.265. The latter is currently the most modern and efficient standard for Video Coding and is used, for example, in...

Im Focus: Ein MRT für den Schreibtisch

Medizintechniker entwickeln Mini-MRT für den Schreibtisch

Medizintechniker der Otto-von-Guericke-Universität Magdeburg haben den Prototypen eines Magnetresonanztomografen entwickelt, der auf einem gewöhnlichem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Society 5.0: Der Mensch im Zentrum der Digitalisierung

05.09.2019 | Veranstaltungen

Wald unter Druck – Brennpunkte und Lösungswege

05.09.2019 | Veranstaltungen

Interspeech-Tagung 2019: Alexa und Siri zu Gast in Graz

04.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fortschritte auf dem Weg zum Verständnis der Neutrino-Eigenschaften

06.09.2019 | Physik Astronomie

Nanopartikel in Lithium-Schwefel-Akkus mit Neutronen aufgespürt

06.09.2019 | Energie und Elektrotechnik

Schneller schalten dank Elektronenfließband

06.09.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics