Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Extremereignisse im Gehirn

25.02.2016

Physiker der Universitäten Bonn und Oldenburg haben ein Modell entwickelt, dessen Verhalten – obwohl es auf strengen Regeln basiert – sich scheinbar spontan ändern kann. Auch in der Natur kommt es häufig zu derartigen Wechseln, etwa bei der Entstehung von Migräne-Attacken oder epileptischen Anfällen. Der von den Forschern erstmalig beschriebene Mechanismus könnte dazu beitragen, Extremereignisse wie diese besser zu verstehen. Die Arbeit erscheint in Kürze im Fachmagazin Physical Review X, ist aber bereits online abrufbar.

Über den Computer-Bildschirm ziehen unregelmäßige feuerrote Ringe. Sie vergrößern sich, verschmelzen miteinander, lösen sich auf, bilden Nachkommen – ein stetiger Kreislauf aus Entstehen und Vergehen. Doch plötzlich wird der Schirm dunkel; die Ringe sind verschwunden.


Chaotischer Sattel, der das Verhalten des in Bonn und Oldenburg entwickelten Modells beschreibt. Man kann sich ihn vereinfacht als gebogenen Pferdesattel vorstellen, auf dem eine Kugel entlangrollt.

(c) Grafik: AG Neurophysik/Uniklinik für Epileptologie Bonn

Ein paar Sekunden lang tut sich nichts. Dann beginnt die dunkle Fläche zu pulsieren. Sie ändert rhythmisch ihre Farbe, kaum wahrnehmbar zunächst, doch dann immer deutlicher. Kurz darauf ein zweiter Wechsel: Die gesamte Fläche blitzt plötzlich rot auf. Schließlich erscheinen die Ringe wieder; das Extremereignis ist vorbei.

So ähnlich könnte es im Gehirn aussehen, wenn sich eine Migräne-Attacke anbahnt oder ein epileptischer Anfall entsteht: Plötzlich geraten Milliarden von Neuronen zur selben Zeit in einen Ausnahmezustand. Die Regeln, denen sie normalerweise gehorchen, scheinen mit einem Mal außer Kraft gesetzt.

Die Software, die in dem Büro der Klinik für Epileptologie am Bonner Universitätsklinikum ihre Ergebnisse auf den Computerschirm malt, zeigt ein ganz ähnliches Verhalten: Scheinbar aus dem Nichts heraus, in völlig unvorhersagbaren Abständen, wechselt das zugrunde liegende Modell seine Dynamik. Das Erstaunliche daran: Es gehorcht eigentlich einfachen Regeln, die dennoch so etwas wie Zufall erzeugen.

Small-World-Effekte

Das Modell ist ein Geflecht von vielen tausend Einzelelementen, den Knoten. Diese sind miteinander vernetzt – sie können also miteinander kommunizieren und einander beeinflussen. Sie sprechen dabei nicht nur mit ihren Nachbarn, sondern auch mit einigen weit abgelegenen Knoten. Wissenschaftler sprechen von einem „Small-World“-Netzwerk. Ganz ähnlich kommunizieren auch die Nervenzellen im Gehirn miteinander.

Obwohl die Kommunikationsregeln genau festgelegt sind, zeigen derartige Netzwerke ein sehr komplexes Verhalten. Das liegt einerseits an der Vielzahl der Knoten, andererseits aber auch an der Verdrahtung dieser Knoten untereinander. „Wir konnten nun zeigen, dass sich das Verhalten derartiger Netzwerke spontan ändern kann“, erklärt Gerrit Ansmann, Erstautor der Arbeit und Doktorand in der Arbeitsgruppe Neurophysik. „Diese Wechsel erfolgen aber nur unter bestimmten Rahmenbedingungen“, erläutert Prof. Dr. Klaus Lehnertz, Leiter der Arbeitsgruppe. „Wir hoffen, mit unserem Modell besser verstehen zu können, unter welchen Bedingungen es im Gehirn zu Extremereignissen kommt.“

Der Wechsel zwischen den einzelnen Aktivitätsmustern einschließlich der Entstehung und des Verschwindens von Extremereignissen basiert auf einem grundlegenden Mechanismus, der in ähnlicher Form auch für andere Systeme, wie zum Beispiel bei Erregungsmustern im Herz anwendbar ist. „Diese Allgemeingültigkeit ermöglicht vielfältige Anwendungen dieser Ergebnisse auch in anderen Wissenschaftsgebieten“, unterstreicht Prof. Dr. Ulrike Feudel, Leiterin der Arbeitsgruppe Theoretische Physik/Komplexe Systeme im Institut für Chemie und Biologie des Meeres der Universität Oldenburg.

Die Arbeit entstand im Rahmen eines Projekts, das von der Volkswagen-Stiftung gefördert wird. Die Wissenschaftler untersuchen darin am Beispiel epileptischer Anfälle und schädlicher Algenblüten, durch welche Mechanismen Extremereignisse entstehen.

Publikation: Gerrit Ansmann, Klaus Lehnertz und Ulrike Feudel: Self-induced switchings between multiple space–time patterns on complex networks of excitable units

Kontakt für die Medien:

Prof. Dr. Klaus Lehnertz
Arbeitsgruppe Neurophysik
Klinik für Epileptologie
Universitätsklinikum Bonn
Tel. 0228/28715864
E-Mail: Klaus.Lehnertz@ukb.uni-bonn.de

Prof. Dr. Ulrike Feudel
Arbeitsgruppe Theoretische Physik/Komplexe Systeme
Institut für Chemie und Biologie des Meeres
Universität Oldenburg
Telefon: 0441/7982790
E-Mail: ulrike.feudel@uni-oldenburg.de

Weitere Informationen:

http://arxiv.org/pdf/1602.02177 Publikation online

Johannes Seiler | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Was die Tiefsee über die Sterne verrät
18.12.2018 | Technische Universität Berlin

nachricht Beim Phasenübergang benutzen die Elektronen den Zebrastreifen
17.12.2018 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New megalibrary approach proves useful for the rapid discovery of new materials

Northwestern discovery tool is thousands of times faster than conventional screening methods

Different eras of civilization are defined by the discovery of new materials, as new materials drive new capabilities. And yet, identifying the best material...

Im Focus: Wie Bakterien ein Antibiotikum ausschalten

Forscher des HZI und HIPS haben entdeckt, dass resistente Bakterien den Wirkstoff Albicidin mithilfe eines massenhaft gebildeten Proteins einfangen und inaktivieren

Gegen die immer häufiger auftauchenden multiresistenten Keime verlieren gängige Antibiotika zunehmend ihre Wirkung. Viele Bakterien haben natürlicherweise...

Im Focus: How bacteria turn off an antibiotic

Researchers from the HZI and the HIPS discovered that resistant bacteria scavenge and inactivate the agent albicidin using a protein, which they produce in large amounts

Many common antibiotics are increasingly losing their effectiveness against multi-resistant pathogens, which are becoming ever more prevalent. Bacteria use...

Im Focus: Wenn sich Atome zu nahe kommen

„Dass ich erkenne, was die Welt im Innersten zusammenhält“ - dieses Faust’sche Streben ist durch die Rasterkraftmikroskopie möglich geworden. Bei dieser Mikroskopiemethode wird eine Oberfläche durch mechanisches Abtasten abgebildet. Der Abtastsensor besteht aus einem Federbalken mit einer atomar scharfen Spitze. Der Federbalken wird in eine Schwingung mit konstanter Amplitude versetzt und Frequenzänderungen der Schwingung erlauben es, kleinste Kräfte im Piko-Newtonbereich zu messen. Ein Newton beträgt zum Beispiel die Gewichtskraft einer Tafel Schokolade, und ein Piko-Newton ist ein Millionstel eines Millionstels eines Newtons.

Da die Kräfte nicht direkt gemessen werden können, sondern durch die sogenannte Kraftspektroskopie über den Umweg einer Frequenzverschiebung bestimmt werden,...

Im Focus: Datenspeicherung mit einzelnen Molekülen

Forschende der Universität Basel berichten von einer neuen Methode, bei der sich der Aggregatzustand weniger Atome oder Moleküle innerhalb eines Netzwerks gezielt steuern lässt. Sie basiert auf der spontanen Selbstorganisation von Molekülen zu ausgedehnten Netzwerken mit Poren von etwa einem Nanometer Grösse. Im Wissenschaftsmagazin «small» berichten die Physikerinnen und Physiker von den Untersuchungen, die für die Entwicklung neuer Speichermedien von besonderer Bedeutung sein können.

Weltweit laufen Bestrebungen, Datenspeicher immer weiter zu verkleinern, um so auf kleinstem Raum eine möglichst hohe Speicherkapazität zu erreichen. Bei fast...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung 2019 in Essen: LED Produktentwicklung – Leuchten mit aktuellem Wissen

14.12.2018 | Veranstaltungen

Pro und Contra in der urologischen Onkologie

14.12.2018 | Veranstaltungen

Konferenz zu Usability und künstlicher Intelligenz an der Universität Mannheim

13.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Natürliche Nanofasern aus Zellulose

19.12.2018 | Biowissenschaften Chemie

Studie zu Mikroben-DNA: Künstliche Intelligenz hilft, die Umwelt zu überwachen

19.12.2018 | Studien Analysen

Stoffwechsel-Innovation in der Evolution von E. coli entstand durch eine einzige Genübertragung

19.12.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics