Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Experimenteller Mini-Beschleuniger erreicht Rekordenergie

11.07.2019

Ein DESY-Forschungsteam hat einen neuen Rekord für einen Miniatur-Teilchenbeschleuniger erzielt: Erstmals hat ein mit Terahertz-Strahlung betriebener Beschleuniger die Energie der injizierten Elektronen mehr als verdoppelt. Der Aufbau aus zwei gekoppelten Terahertz-Manipulatoren verbesserte dabei die Qualität des beschleunigten Elektronenstrahls im Vergleich zu früheren Terahertz-Experimenten erheblich, wie Dongfang Zhang und seine Kolleginnen und Kollegen vom Hamburger Center for Free-Electron Laser Science (CFEL) bei DESY im Fachblatt „Optica“ berichten. „Wir haben die bislang besten Strahlparameter für Terahertz-Beschleuniger erreicht“, unterstreicht Zhang.

„Dieses Ergebnis ist ein wichtiger Schritt vorwärts auf dem Weg zur praktischen Nutzung von Terahertz-getriebenen Beschleunigern“, betont der Leiter der Gruppe Ultrafast Optics and X-rays am CFEL, Franz Kärtner. Terahertz-Strahlung liegt im elektromagnetischen Spektrum zwischen Infrarot und Mikrowellen und ist der vielversprechende Antrieb für eine neue Generation kompakter Teilchenbeschleuniger.


Der zweistufige Minibeschleuniger komprimiert Elektronenpakete (blau) im ersten Schritt, bevor er sie beschleunigt. Die Module sind rund 2cm breit und werden mit Terahertz-Strahlung (rot) betrieben.

Bild: DESY, Gesine Born

„Die Wellenlänge der Terahertz-Strahlung ist rund hundertmal kürzer als die Radiowellen, die üblicherweise zur Beschleunigung von Teilchen verwendet werden“, erläutert Kärtner. „Das heißt, dass sich auch die Beschleunigerkomponenten rund hundertmal kleiner bauen lassen.“

Der Terahertz-Ansatz verspricht daher Beschleuniger in Laborgröße, die komplett neue Anwendungen ermöglichen sollen wie etwa kompakte Röntgenlaser für die Analyse verschiedenster Materialien und möglicherweise sogar für medizinische Untersuchungen. Die Technologie wird gegenwärtig entwickelt.

Da Terahertz-Wellen so schnell oszillieren, müssen alle Komponenten und jeder Prozessschritt präzise synchronisiert werden. „Um beispielsweise den höchsten Energiezuwachs zu erzielen, müssen die Elektronen das Terahertz-Feld genau in der Beschleunigungsphase zur halben Periode treffen“, sagt Zhang.

In Beschleunigern fliegen Teilchen in der Regel nicht in einem kontinuierlichen Strahl, sondern in vielen kleinen Paketen. Wegen des schnell wechselnden Feldes in Terahertz-Beschleunigern, müssen diese Pakete sehr kurz sein, damit sie über ihre gesamte Länge eine gleichmäßige Beschleunigung erfahren. „In früheren Experimenten waren die Elektronenpakete zu lang“, berichtet Zhang.

„Da das Terahertz-Feld so schnell oszilliert, wurden nur einige Elektronen in den Paketen beschleunigt, während andere sogar abgebremst wurden. Unter dem Strich ergab sich so nur ein moderater Energiezuwachs und, viel schlimmer, eine breite Verteilung der Elektronenenergien, was eine schlechte Strahlqualität bedeutet.“ Dazu vergrößerte dieser Effekt die sogenannte Emittanz, ein Maß für die Bündelung des Elektronenstrahls. Je stärker die Bündelung, desto besser – und desto kleiner die Emittanz.

Um die Strahlqualität zu verbessern, hat Zhangs Team einen Zwei-Stufen-Beschleuniger gebaut. Dazu verwendeten sie zwei identische Kopien eines selbst entwickelten Mehrzweckgeräts: Der Segmentierte Terahertz-Elektronenbeschleuniger und -manipulator STEAM kann je nach Betriebsmodus Elektronenpakete komprimieren, fokussieren, beschleunigen und analysieren.

Die Forscherinnen und Forscher schalteten zwei STEAMs hintereinander: Das erste komprimiert die hineinfliegenden Elektronenpakete von ungefähr 0,3 Millimeter Länge auf 0,1 Millimeter, und das zweite beschleunigt dann die komprimierten Pakete.

„Diese Anordnung erfordert eine Kontrolle im Bereich von billiardstel Sekunden, was uns gelungen ist“, berichtet Zhang. „Das hat zu einer vierfach kleineren Energieverteilung und einer sechsmal kleineren Emittanz geführt, was die bislang besten Strahlparameter eines Terahertz-Beschleunigers darstellt.“

Der Beschleuniger erhöhte die Energie der verwendeten Elektronen von 55 auf 125 Kilo-Elektronenvolt (keV), lieferte also einen Energiezuwachs von 70 keV. „Das ist der erste Energieschub von mehr als 100 Prozent in einem Terahertz-getriebenen Beschleuniger“, betont Zhang.

Das Zwei-Stufen-System erzeugte ein Beschleunigungsfeld (Gradienten) mit einer Stärke von 200 Millionen Volt pro Meter (200 MV/m), das ist nah an den derzeit stärksten konventionellen Teilchenbeschleunigern. Für praktische Anwendungen muss das deutlich erhöht und die Strahlqualität weiter verbessert werden. Die Wissenschaftlerinnen und Wissenschaftler haben nun einen Weg gezeigt, wie das gelingen könnte.

„Unsere Arbeit zeigt, dass noch eine dreimal stärkere Kompression der Elektronenpakete möglich ist. Zusammen mit stärkerer Terahertz-Strahlung scheinen Beschleuniger-Gradienten im Bereich von Gigavolt pro Meter machbar“, sagt Zhang. „Das Terahertz-Konzept erscheint daher zunehmend als realistische Option für die Entwicklung kompakter Elektronenbeschleuniger.“

Der erreichte Fortschritt ist auch von zentraler Bedeutung für das vom europäischen Forschungsrat ERC geförderten Projekt AXSIS (Frontiers in Attosecond X-ray Science: Imaging and Spectroscopy) am CFEL, das an der Ablichtung und Spektroskopie komplexer biophysikalischer Prozesse mit Hilfe kurzer Röntgenpulse arbeitet, die mit Terahertz-betriebenen Beschleunigern erzeugt werden. Das CFEL ist eine gemeinsame Einrichtung von DESY, Universität Hamburg und der Max-Planck-Gesellschaft.

DESY zählt zu den weltweit führenden Teilchenbeschleuniger-Zentren und erforscht die Struktur und Funktion von Materie – vom Wechselspiel kleinster Elementarteilchen, dem Verhalten neuartiger Nanowerkstoffe und lebenswichtiger Biomoleküle bis hin zu den großen Rätseln des Universums.

Die Teilchenbeschleuniger und die Nachweisinstrumente, die DESY an seinen Standorten in Hamburg und Zeuthen entwickelt und baut, sind einzigartige Werkzeuge für die Forschung: Sie erzeugen das stärkste Röntgenlicht der Welt, bringen Teilchen auf Rekordenergien und öffnen neue Fenster ins Universum. DESY ist Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands, und wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert.

Originalveröffentlichung:
Femtosecond phase control in high field Terahertz driven ultrafast electron sources; Dongfang Zhang, Arya Fallahi, Michael Hemmer, Hong Ye, Moein Fakhari, Yi Hua, Huseyin Cankaya, Anne-Laure Calendron, Luis E. Zapata, Nicholas H. Matlis, Franz X. Kärtner; „Optica“, 2019; DOI: 10.1364/OPTICA.6.000872

Wissenschaftliche Ansprechpartner:

Dr. Dongfang Zhang
CFEL/DESY
Telefon: +49 40 8998-6366
dongfang.zhang@desy.de

Prof. Franz X. Kärtner
CFEL/DESY
Telefon: +49 40 8998-6350
franz.kaertner@desy.de

Originalpublikation:

Femtosecond phase control in high field Terahertz driven ultrafast electron sources; Dongfang Zhang, Arya Fallahi, Michael Hemmer, Hong Ye, Moein Fakhari, Yi Hua, Huseyin Cankaya, Anne-Laure Calendron, Luis E. Zapata, Nicholas H. Matlis, Franz X. Kärtner; „Optica“, 2019; DOI: http://dx.doi.org/10.1364/OPTICA.6.000872

Weitere Informationen:

http://www.desy.de/aktuelles/news_suche/index_ger.html?openDirectAnchor=1654&... - Pressemitteilung mit Bildern im Web

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs
09.07.2020 | Georg-August-Universität Göttingen

nachricht Materialforscher schicken „metallisches Glas“ zur internationalen Raumstation
08.07.2020 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Im Focus: Robuste Materialien in Schwingung versetzt

Kieler Physikteam beobachtet in Echtzeit extrem schnelle elektronische Änderungen in besonderer Materialklasse

In der Physik werden sie zurzeit intensiv erforscht, in der Elektronik könnten sie ganz neue Funktionen ermöglichen: Sogenannte topologische Materialien...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Neues Verständnis der Defektbildung an Silizium-Elektroden

Theoretisch lässt sich das Speichervermögen von handelsüblichen Lithiumionen-Batterien noch vervielfachen – mit einer Elektrode, die auf Silizium anstatt auf Graphit basiert. Doch in der Praxis machen solche Akkus mit Silizium-Anoden nach wenigen Lade-Entlade-Zyklen schlapp. Ein internationales Team um Forscher des Jülicher Instituts für Energie- und Klimaforschung hat jetzt in einzigartiger Detailgenauigkeit beobachtet, wie sich die Defekte in der Anode ausbilden. Dabei entdeckten sie bislang unbekannte strukturelle Inhomogenitäten in der Grenzschicht zwischen Anode und Elektrolyt. Die Erkenntnisse sind in der Fachzeitschrift „Nature Communications“ erschienen.

Silizium-basierte Anoden können in Lithium-Ionen-Akkus prinzipiell neunmal so viel Ladung speichern wie der üblicherweise verwendete Graphit, bei gleichem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

09.07.2020 | Physik Astronomie

Klimawandel: Schnelltest für Korallen

09.07.2020 | Biowissenschaften Chemie

»NEXT.TrenchLog«: Digitalisierung in der Baugrube – georeferenzierte Vermessungsdaten per App

09.07.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics