Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erster Nachweis von Antimateriewellen mit Interferenz-Experiment

06.05.2019

Einer internationalen Forschungskooperation unter Beteiligung der Universität Bern ist erstmals anhand eines sogenannten Interferenz-Experiments der Beweis gelungen, dass sich Antimaterie-Teilchen nicht nur wie Teilchen, sondern auch wie Wellen verhalten können. Dieser Erfolg ebnet den Weg zu einem neuen Untersuchungsfeld in der Erforschung von Antimaterie.

Gemäss den Gesetzen der Quantenphysik weisen Materie-Teilchen nicht nur die Eigenschaften von Teilchen, sondern auch diejenigen von Wellen auf. Dieser Welle-Teilchen-Dualismus wurde bereits 1924 vom französischen Physiker Louis de Broglie postuliert.


Das Talbot-Lau-Interferometer der QUPLAS-Kollaboration im Positronenlabor des Politecnico di Milano in Como.

© LHEP / AEC, Universität Bern

Die Existenz des Wellenverhaltens von Materie (Materiewellen) wurde seither erfolgreich in verschiedenen Experimenten mit Elektronen und Neutronen sowie auch mit komplexerer Materie bis hin zu grossen Molekülen nachgewiesen. Auch bei Antimaterie-Teilchen kann der Welle-Teilchen-Dualismus nachgewiesen werden – dies gelang bereits mit sogenannten Beugungsexperimenten.

Nun schafften es Forschende der internationalen QUPLAS-Kollaboration jedoch erstmals, Antimateriewellen auch anhand von einzelnen Positronen (Antiteilchen des Elektrons) mit einem sogenannten Interferenz-Experiment nachzuweisen. Die Ergebnisse wurden im renommierten Journal Science Advances publiziert.

Ein Experiment, das bereits Einstein umtrieb

Zur QUPLAS-Kollaboration gehören Forschende der Universität Bern und des Politecnico di Milano. Um den Welle-Teilchen-Dualismus von einzelnen Positronen nachzuweisen, führten sie ein Experiment durch, das dem sogenannten Doppelspalt-Experiment ähnlich ist.

Dieses hatten bereits berühmte Physiker wie Albert Einstein und Richard Feynman als Gedankenexperiment ins Spiel gebracht; es wird in der Quantenphysik oft verwendet, um das Wellenverhalten von Teilchen zu demonstrieren. Bei diesem Experiment werden Teilchen (in diesem Fall Positronen) von einer Quelle aus auf einen Detektor-Schirm geschossen. Dazwischen befindet sich eine Platte mit zwei oder mehreren Spalten, durch die die Teilchen hindurchfliegen können.

Wenn sich die Teilchen wie Teilchen verhalten, zeigt sich auf dem Schirm ein Muster aus Streifen, das der Anzahl Spalten entspricht. Wenn sich die Teilchen jedoch wie Wellen verhalten, zeigt sich auf dem Schirm ein sogenanntes Interferenzmuster, bestehend aus mehreren Streifen (mehr Streifen als Spalten). Dies kommt daher, weil sich die von der Quelle ausgehenden Wellen gegenseitig überlagern.

Auftreffpunkt auf dem Mikrometer genau

Den QUPLAS-Forschenden gelang es nun erstmals in einem solchen Experiment, ein Interferenzmuster von Antimateriewellen nachzuweisen. Sie nutzen dazu einen innovatives sogenanntes Talbot-Lau-Interferometer mit einer Kernemulsionsplatte als ortsempfindlichen Detektor für die auftreffenden Teilchen.

«Mit der Kernemulsion konnten wir den Auftreffpunkt der einzelnen Positronen sehr exakt bestimmen und so das Interferenzmuster auf den Mikrometer – also den millionstel eines Meters – genau rekonstruieren», erklärt Dr. Ciro Pistillo vom Laboratory for High Energy Physics (LHEP) und Albert Einstein Center for Fundamental Physics (AEC) der Universität Bern. Damit konnten die Forschenden zwei grosse Hindernisse von Antimaterieexperimenten überwinden: den geringen Antiteilchenfluss und die komplexe Manipulation der Antiteilchen-Strahlung.

Die Forschenden des LHEP und AEC spielten eine Schlüsselrolle für den Erfolg des Projekts: Akitaka Ariga, Antonio Ereditato, Ciro Pistillo und Paola Scampoli waren insbesondere für das Design, den Aufbau und den Betrieb des Emulsionsdetektors sowie für die Analyse der Auftreffpunkte der Positronen verantwortlich.

Neues Feld in der Antimaterieforschung

«Unsere Beobachtung der Ennergieabhängngigkeit des Interferenzmusters beweist eindeutig dessen quantenmechanischen Ursprung und somit das Wellenverhalten der Positronen », sagt Professorin Paola Scampoli. Der Erfolg des Experiments ebnet den Weg zu einem neuen Untersuchungsfeld auf der Grundlage von Antimaterie-Interferometrie. Ein Ziel dabei sind beispielweise Gravitationsmessungen mit exotischen Atomen wie Positronium, das aus einem Elektron und einem Antiteilchen (Positron) besteht.

Damit könnte die Gültigkeit des sogenannten schwachen Äquivalenzprinzips für die Antimaterie überprüft werden. Dieses Prinzip ist die Grundlage der allgemeinen Relativitätstheorie und wurde noch nie mit Antimaterie geprüft. Künftige Forschungsfelder auf Basis der Antimaterie-Interferometrie könnten einst Aufschluss liefern über das Ungleichgewicht von Materie und Antimaterie im Universum.

Wissenschaftliche Ansprechpartner:

Dr. Ciro Pistillo (Englisch, Italienisch, Anfragen auf Deutsch werden weitergegeben)
Universität Bern
Albert Einstein Center for Fundamental Physics (AEC), Laboratory for High Energy Physics
Tel. +41 (0)31 631 40 63 / ciro.pistillo@lhep.unibe.ch

Originalpublikation:

S. Sala, A. Ariga, A. Ereditato, R. Ferragut, M. Giammarchi, M. Leone, C. Pistillo, P. Scampoli, First demonstration of antimatter wave interferometry. Sci. Adv. 5, eaav7610 (2019). DOI: 10.1126/sciadv.aav7610

Weitere Informationen:

https://www.unibe.ch/aktuell/medien/media_relations/medienmitteilungen/2019/medi...

Nathalie Matter | Universität Bern

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erstmals Nachglühen eines Gammablitzes im höchstenergetischen Gammalicht beobachtet
21.11.2019 | Max-Planck-Institut für Kernphysik

nachricht Forscherteam entdeckt erstmals drei supermassereiche Schwarze Löcher im Kern einer Galaxie
21.11.2019 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartiges Antibiotikum gegen Problemkeime in Sicht

Internationales Forscherteam mit Beteiligung der Universität Gießen entdeckt neuen Wirkstoff gegen gramnegative Bakterien – Darobactin attackiert die Erreger an einem bislang unbekannten Wirkort

Immer mehr bakterielle Erreger von Infektionskrankheiten entwickeln Resistenzen gegen die marktüblichen Antibiotika. Typische Krankenhauskeime wie Escherichia...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materialien eingesetzt werden. Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut für Polymerforschung haben nun entdeckt, dass aus Graphen bestehende Nano-Moleküle genutzt werden können, um diese Mikroskopie-Technik zu verbessern. Diese Nano-Moleküle bieten eine Reihe essentieller Vorteile gegenüber den bisher verwendeten Materialien, die die Mikroskopie-Technik noch vielfältiger einsetzbar machen.

Mikroskopie ist eine wichtige Untersuchungsmethode in der Physik, Biologie, Medizin und vielen anderen Wissenschaften. Sie hat jedoch einen Nachteil: Ihre...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Mit künstlicher Intelligenz zum besseren Holzprodukt

Der Empa-Wissenschaftler Mark Schubert und sein Team nutzen die vielfältigen Möglichkeiten des maschinellen Lernens für holztechnische Anwendungen. Zusammen mit Swiss Wood Solutions entwickelt Schubert eine digitale Holzauswahl- und Verarbeitungsstrategie unter Verwendung künstlicher Intelligenz.

Holz ist ein Naturprodukt und ein Leichtbauwerkstoff mit exzellenten physikalischen Eigenschaften und daher ein ausgezeichnetes Konstruktionsmaterial – etwa...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Sichere Datenübertragung mit Ultraschall am Handy: neue Methode zur Nahfeldkommunikation

21.11.2019 | Kommunikation Medien

Rasante Entstehung von Antibiotikaresistenzen im Behandlungsalltag

21.11.2019 | Medizin Gesundheit

Gesundheits-App als Fitness-Coach für Familien

21.11.2019 | Kommunikation Medien

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics