Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erste Hinweise auf Higgs-Mechanismus in einem Magnet

07.08.2012
Der britische Physiker Peter Higgs war zuletzt in aller Munde. Forscher am CERN hatten den mutmaßlichen Nachweis des von ihm in den 1960er-Jahren vorhergesagten Higgs-Bosons bekannt gegeben.

Der von ihm vorgeschlagene Higgs-Mechanismus erklärt, wie Elementarteilchen zu ihrer Masse kommen – und spielt auch jenseits der Elementarteilchenphysik eine Rolle. Ein internationales Forscherteam hat mit Hilfe von Neutronenstreuexperimenten erste Hinweise darauf gefunden, dass eben dieser Mechanismus einen Phasenübergang von exotischen magnetischen Zuständen in Yb2Ti2O7-Kristallen nahe des absoluten Nullpunkts erklären kann.


Mit Hilfe äußerst sensitiver Neutronstreuenexperimente an der Garchinger Außenstelle des Forschungszentrum Jülich konnte ein internationales Forscherteam die charakteristischen Merkmale eines Quanten-Spin-Eises (Abbildung links) experimentell nachweisen. Rechts zum Vergleich die Messergebnisse eines „klassischen“ Spin-Eises. Die Forscher fanden, dass der Phasenübergang zwischen dem Quanten-Spin-Eis und einer ferromagnetischen Ordnung durch den so genannten Higgs-Mechanismus bestimmt wird, der wesentlicher Bestandteil des Standardmodells der Elementarteilchenphysik ist.

Quelle: Forschungszentrum Jülich


Links (a): Gitterstruktur von Spin-Eis. Die Spins sitzen an den Enden benachbarter Tetraeder, die zu einem „Pyrochlor-Gitter“ vernetzt sind – ähnlich wie die Anordnung der Wassermoleküle in einem Eiskristall.
Rechts (b): Die Spins an den Eckpunkten eines Tetraeders können entweder nach innen oder nach außen zeigen. Im Grundzustand zeigen bei jedem Tetraeder zwei Spins hinein und zwei heraus. Diese „Eis-Regel“ erlaubt unterschiedliche Konfigurationen (2-in, 2-out). (c) Durch Anregung und geometrische Abweichungen entstehen magnetische Defekte (3-in, 1-out), die zu einem Plus von Nord- oder Südpolen im Inneren führen und sich über die Gitterstruktur fortpflanzen, sodass die Tetraedermitte als magnetischer Monopol angesehen werden kann.

Quelle: Forschungszentrum Jülich

Bei der Abkühlung eines als „Quanten-Spin-Eis“ bezeichneten Zustands beobachteten sie zum ersten Mal Anzeichen für den spontanen Austausch mit dem von Higgs vorhergesagten Higgs-Feld in einem Magneten. Die Ergebnisse sind in der renommierten Fachzeitschrift „Nature Communications“ (DOI: 10.1038/ncomms1989) nachzulesen.

Phasenübergänge beschreiben, wie ein Material von einem Zustand in einen anderen wechselt. Ein gängiges Beispiel ist das Schmelzen von Eis. Daneben gibt es auch Phasenübergänge von elektronischen und magnetischen Zuständen. Die Magnetisierung von Eisen vollzieht sich beispielsweise unterhalb einer bestimmten, kritischen Temperatur alleine aufgrund der elektromagnetischen Wechselwirkungen zwischen Elektronen und deren magnetischen Momenten, den Spins. Doch nicht alle magnetischen Phasenübergänge lassen sich auf diese Weise erklären. Das zeigen die Ergebnisse eines Teams aus deutschen, taiwanesischen, japanischen und britischen Wissenschaftlern, die erste experimentelle Hinweise auf einen sogenannten Higgs-Übergang in Yb2Ti2O7-Kristallen bei Temperaturen nahe des absoluten Nullpunkts gefunden haben.

Die Existenz dieses Phasenübergangs war bereits lange bekannt, nicht aber, was dabei genau passiert. Erst Experimente mit polarisierten Neutronen an einer Außenstelle des Forschungszentrums Jülich an der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) in Garching bei München klärten das Rätsel. Solche Experimente ermöglichen, die magnetische Struktur von Materialien mit atomarer Auflösung zu messen. Die hohe Intensität der Garchinger Neutronenquelle ermöglichte zudem, die schwachen Signale der Probe zu detektieren. Nicht zuletzt konnten dort die Experimente bei den notwendigen tiefen Temperaturen durchgeführt werden.

Die Wissenschaftler vom Forschungszentrum Jülich sowie aus Forschungseinrichtungen in Taiwan, Japan und Großbritannien untersuchten zunächst die Phase oberhalb von 210 Milli-Kelvin und fanden dabei ein so genanntes „Quanten-Spin-Eis“ mit magnetischen Monopolen. Der Physiker Paul Dirac hatte solche magnetischen Monopole bereits 1931 vorhergesagt. Experimentell ließen sich lange Zeit jedoch nur magnetische Dipole nachweisen. Diese besitzen ähnlich wie ein Stabmagnet zwei gegensätzliche Pole, die sich nicht voneinander trennen lassen. Erst 2009 ließen sich erstmals auch magnetische Monopole in „klassischem“ Spin-Eis beobachten. Diese verhalten sich wie einzelne, isolierte Nord- oder Südpole, ähnlich wie einzelne magnetische Ladungen. Die Spins, ordnen sich dabei nach demselben Muster an wie Wassermoleküle im Eis. Wobei das untersuchte Quanten-Spin-Eis ein deutlich geringeres magnetisches Moment als normales Spin-Eis besitzt.

„Bei Temperaturen von über 210 Milli-Kelvin formen die magnetischen Monopole des Quanten-Spin-Eises ein sehr komplexes Muster. Unter 210 Milli-Kelvin dagegen ordnen sie sich schlagartig parallel an, also ferromagnetisch wie in Eisen“, erläutert Dr. Yixi Su vom Jülicher Zentrum für Forschung mit Neutronen (JCNS). In der Quantenphysik ist ein solcher Übergang bei extrem tiefen Temperaturen als Bose-Einstein-Kondensation bekannt. Diese setzt aber voraus, dass die beteiligten Teilchen eine Masse haben. Doch die betroffenen magnetischen Monopole sind normalerweise, wie auch im Fall des beobachteten Quanten-Spin-Eises, masselos. Es handelt sich um sogenannte Quasi-Teilchen, die erst durch das Zusammenspiel mehrerer Elektronen entstehen und wie eine Art Welle durch den Kristall wandern. Die Forscher gehen daher davon aus, die typischen Kennzeichen eines Phasenübergangs basierend auf dem Higgs-Mechanismus beobachtet zu haben. „Das wäre der unseres Wissens erste Nachweis eines Higgs-Übergangs in einem Magneten“, berichtet Su.

Der Higgs-Mechanismus erklärt als zentraler Bestandteil des physikalischen Standardmodells, warum Teilchen – auch Elektronen und Quarks, aus denen sich die Atomkerne zusammensetzen – überhaupt eine Masse haben. Verantwortlich ist das sogenannte Higgs-Feld, das im ganzen Universum gegenwärtig ist. Das Feld selbst entzieht sich der direkten Beobachtung. Aber Elementarteilchen – und auch Quasi-Teilchen wie die magnetischen Monopole in diesem Fall – können damit wechselwirken und erhalten dadurch ihre Masse.

Solche quantenmechanischen elektromagnetischen Phänomene genau zu verstehen, ist wesentlich für das Verständnis der modernen Physik. Unter anderem unsere heutige Informationstechnologie basiert darauf. Die Forscher wollen nun Yb2Ti2O7 als Modellsystem nutzen, um interessante Eigenschaften von Quanten-Spin-Flüssigkeiten zu untersuchen. Dabei setzen sie auch weiter auf Neutronenstreuexperimente. „Keine andere Methode ist derzeit sensitiv genug“, so Su.

Originalpublikation:
L.-J. Chang, S. Onoda, Y. Su, Y.-J. Kao, K.-D. Tsuei, Y. Yasui, K. Kakurai & M. R. Lees
Higgs transition from a magnetic Coulomb liquid to a ferromagnet in Yb2Ti2O7
Nature Communications 2012 (to be published online)

Weitere Informationen:
Forschungszentrum Jülich: www.fz-juelich.de
Forschung am Jülich Centre for Neutron Science (JCNS): www.fz-juelich.de/jcns/DE/
Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II): www.frm2.tum.de

Ansprechpartner:
Dr. Yixi Su, Jülich Centre for Neutron Science (JCNS), Forschungszentrum Jülich, Tel. 089 289 10714, E-Mail: y.su@fz-juelich.de

Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich,
Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Angela Wenzik | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics