Einzelne Photonen von höchster quantenoptischer Qualität

Prof. Dr. Stephan Reitzenstein, Leiter des Fachgebietes „Optoelektronik und Quantenbauelemente“ der TU Berlin, und seinen Mitarbeitern ist es gelungen, ein neuartiges Herstellungsverfahren für effiziente Einzelphotonenquellen mit höchster quantenoptischer Qualität zu entwickeln.

Das Forscherteam setzt hierbei eine weltweit einzigartige Strukturierungstechnik ein, um einzelne lichtemittierende Quantenpunkte gezielt und mit hoher Präzision in nanophotonische Bauelemente zu integrieren. Das neue Verfahren wurde in der aktuellen Ausgabe der renommierten Fachzeitschrift Nature Communications veröffentlicht*.

Die hergestellten Einzelphotonenquellen nutzen den Fokussiereffekt von deterministisch hergestellten winzigen Mikrolinsen, um die Photonen-Emissionsraten der Quantenpunkt-Halbleiterstrukturen erheblich zu steigern. Dabei weisen diese Quantenpunkt-Mikrolinsenstrukturen alle quantenoptischen Voraussetzungen auf, um die anspruchsvollen Anforderungen der Quantenkommunikationstechnologien zu erfüllen. Dies ist von besonderer Bedeutung, da viele andere Ansätze nur Teilaspekte bedienen.

Die Arbeiten wurden im Rahmen des Sonderforschungsbereiches SFB 787 „Halbleiter-Nanophotonik“, dessen Sprecherhochschule die TU Berlin ist, in Kooperation mit Wissenschaftlern am Konrad-Zuse Institut Berlin durchgeführt.

Für die Herstellung der Einzelphotonenemitter kam dabei eine neu entwickelte und weltweit einzigartige Strukturierungstechnik zum Einsatz, die bei kryogenen Temperaturen arbeitet und spektroskopische Untersuchungsmethoden mit Elektronenstrahllithografie in einem Schritt mit Nanometergenauigkeit vereint. Die Herstellung der Quantenbauelemente wurde durch die exzellente Infrastruktur des Zentrums für Nanophotonik an der TU Berlin ermöglicht.

Optische Quantenkommunikationstechnologien stellen eine zukunftsweisende Weiterentwicklung der konventionellen optischen Übertragungstechniken dar. Im hochaktuellen Bereich der Quantenkryptografie versprechen sie eine inhärent sichere Datenübertragung, indem grundlegende quantenmechanische Gesetzmäßigkeiten ausgenutzt werden.

Hierzu müssen insbesondere konventionelle Lichtquellen, wie zum Beispiel Leuchtdioden oder Laser, durch hochoptimierte Einzelphotonenquellen ersetzt werden. Diese Quantenbauelemente emittieren quasi auf Knopfdruck immer nur ein Photon, sprich die kleinstmögliche Lichtmenge, auf einmal.

* M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt und S. Reitzenstein, Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing 3D in situ electron-beam lithography, Nature Communications, DOI:10.1038/ncomms8662

Weitere Informationen erteilt Ihnen gern:
Prof. Dr. Stephan Reitzenstein
TU Berlin, Institut für Festkörperphysik
Fachgebiet Optoelektronik und Quantenbauelemente
Tel.: 030/314–79704
E-Mail: stephan.reitzenstein@physik.tu-berlin.de

Media Contact

Stefanie Terp idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.tu-berlin.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer