Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einzelne Atome als optische Transistoren

13.05.2010
MPQ-Physiker manipulieren die Transparenz von Atomen mit Hilfe von Laserstrahlen.

Die ständig fortschreitende Verkleinerung der Strukturen auf Computerchips führt dazu, dass bald die Grenze erreicht wird, jenseits der die Gesetze der klassischen Physik nicht mehr gelten.

Weltweit gehen daher Wissenschaftler der Frage nach, ob und wie sich Quanteneffekte für die Übertragung und Verarbeitung von Informationen nutzen lassen. Vielversprechende Systeme sind z. B. Quantennetzwerke, in denen einzelne Lichtquanten die Daten zwischen den Knoten – z.B. einzelnen Atomen – übertragen. Dort werden die Informationen dann gespeichert und verarbeitet.

Ein wichtiges Element bei der Entwicklung und Konzeption solcher Systeme ist die „Elektromagnetisch Induzierte Transparenz (EIT)“. Dieses Phänomen erlaubt es, die optischen Eigenschaften von atomaren Medien mit Hilfe von Licht drastisch zu verändern. Bislang wurde dieser Effekt nur an größeren Ensembles aus vielen hunderttausend Atomen nachgewiesen. Erstmals hat jetzt ein Team um Prof. Gerhard Rempe, Direktor am Max-Planck-Institut für Quantenoptik und Leiter der Abteilung Quantendynamik, gezeigt, dass sich auch die optische Transparenz einzelner, in einem Mikroresonator gefangenen Atome mit Laserpulsen quasi per Knopfdruck kontrollieren lässt (Nature, Advanced Online Publication, DOI: 10.1038 /nature09093 May 2010). Dieses Ergebnis ist ein Meilenstein in der Entwicklung von Werkzeugen für die Quanteninformationsverarbeitung; es vertieft aber auch das Verständnis darüber, wie das Quantenverhalten einzelner Atome durch Licht gesteuert werden kann.

Der Begriff der „Elektromagnetisch Induzierten Transparenz“ beschreibt den Effekt, dass die Wechselwirkung zwischen einem schwachen Laserfeld und einem atomaren Medium durch ein zweites Laserfeld kohärent gesteuert und manipuliert werden kann. Um diesen Effekt zu erzielen, wird in der Praxis das Medium mit zwei Laserstrahlen beleuchtet: Unter dem Einfluss eines Kontroll-Lasers wird das Medium für den schwachen Teststrahl transparent. Darüber hinaus kann der EIT-Effekt dazu genutzt werden, Quanteninformation mit Hilfe von Lichtpulsen in Atomen zu speichern und wieder auszulesen. Damit lassen sich Schnittstellen zwischen den „fliegenden“, die Information übertragenden Photonen und den stationären, als Speicherbausteine genutzten Atomen verwirklichen.

In allen bisherigen Untersuchungen wurde der EIT-Effekt an Ensembles aus sehr vielen Atomen demonstriert. In dem hier beschriebenen Experiment dagegen wird ein einzelnes Rubidium-Atom über längere Zeit in einem von zwei Spiegeln höchster Güte gebildeten Resonator eingefangen. Durch die Vielfachreflexionen wird die Licht-Materie-Wechselwirkung erheblich verstärkt, sodass Resonator und Atom ein stark gekoppeltes System bilden. Entlang der Resonatorachse wird nun Laserlicht eingestrahlt. Im Fall eines leeren Resonators wird das gesamte Licht durchgelassen. Die Anwesenheit eines Atoms führt dagegen dazu, dass das Licht reflektiert wird und die Transmission sinkt. Wird das Atom nun zusätzlich senkrecht zur Resonatorachse mit einem Kontroll-Laser beleuchtet, während die Bedingung für EIT erfüllt ist, wird das Atom wieder durchsichtig und maximale Transmission erzielt. Das einzelne Atom arbeitet also wie ein Transistor: es steuert, ob der Resonator Licht durchlässt oder nicht.

In weiteren Experimenten gelang es den Wissenschaftlern um Prof. Gerhard Rempe, diesen EIT-Effekt auch mit einer kontrollierten Zahl von Atomen im Resonator zu erzielen. „ Die Anwendung des EIT-Effekts auf eine gezielt eingestellte Zahl von Atomen gibt uns die Möglichkeit, viele Quanteneigenschaften des von dem Resonator durchgelassenen Lichtes zu steuern“, erklärt Martin Mücke, Doktorand am Experiment. „Gewöhnlich können Photonen nicht miteinander in Wechselwirkung treten. Mit unserem Experiment können wir ein lang erstrebtes Ziel erreichen: eine starke Wechselwirkung zwischen Photonen, die von einem einzelnen Atom vermittelt wird. Dieser Aufbau ist ein potentieller Baustein für den Quantencomputer der Zukunft.“ Olivia Meyer-Streng

Originalveröffentlichung:
Electromagnetically induced transparency with single atoms in a cavity
M. Mücke, E. Figueroa, J. Bochmann, C. Hahn, K. Murr, S. Ritter, C. J. Villas-Boas und G. Rempe.

Nature, Advance Online Publication, DOI: 10.1038/nature09093, Mai 2010

Kontakt:
Prof. Dr. Gerhard Rempe
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 - 89 / 32905 - 701
Fax: +49 - 89 / 32905 – 311
E-Mail: gerhard.rempe@mpq.mpg.de
Dr. Eden Figueroa
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 - 241
E-Mail: eden.figueroa@mpq.mpg.de
Dipl. Phys. Martin Mücke
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 - 356
E-Mail: martin.muecke@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ein Schritt auf dem Weg zum Spektrometer für jedermann
03.06.2020 | Universität Leipzig

nachricht Der gebrochene Spiegel: Erstmals Messung der Paritätsverletzung in Molekülen möglich?
03.06.2020 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetische Kristallschichten für den Computer von Morgen

Ist die Elektronik, so wie wir sie kennen, am Ende?

Der Einsatz moderner elektronischer Schaltkreise für immer leistungsfähigere Rechentechnik und mobile Endgeräte stößt durch die zunehmende Miniaturisierung in...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: Neue Messung verschärft altes Problem

Seit Jahrzehnten rätseln Astrophysiker über zwei markante Röntgen-Emissionslinien von hochgeladenem Eisen: ihr gemessenes Helligkeitsverhältnis stimmt nicht mit dem berechneten überein. Das beeinträchtigt die Bestimmung der Temperatur und Dichte von Plasmen. Neue sorgfältige, hoch-präzise Messungen und Berechnungen mit modernsten Methoden schließen nun alle bisher vorgeschlagenen Erklärungen für diese Diskrepanz aus und verschärfen damit das Problem.

Heiße astrophysikalische Plasmen erfüllen den intergalaktischen Raum und leuchten hell in Sternatmosphären, aktiven Galaxienkernen und Supernova-Überresten....

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt

Eine Forschungskooperation der Universität Konstanz unter Federführung von Professor Dr. Christof Hauck (Fachbereich Biologie) mit Beteiligung des Klinikum Konstanz, eines Konstanzer Diagnostiklabors und des Konstanzer Unternehmens myPOLS Biotec, einer Ausgründung aus der Arbeitsgruppe für Organische Chemie / Zelluläre Chemie der Universität Konstanz, hat ein neuartiges Covid-19-Schnelltestverfahren entwickelt. Dieser Test ermöglicht es, Ergebnisse in der Hälfte der Zeit zu ermitteln – im Vergleich zur klassischen Polymerase-Ketten-Reaktion (PCR).

Die frühe Identifikation von Patienten, die mit dem neuartigen Coronavirus (SARS-CoV-2) infiziert sind, ist zentrale Voraussetzung bei der globalen Bewältigung...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Magnetische Kristallschichten für den Computer von Morgen

03.06.2020 | Informationstechnologie

Wundheilung detailliert aufgeschlüsselt

03.06.2020 | Biowissenschaften Chemie

Ein einzelnes Gen bestimmt das Geschlecht von Pappeln

03.06.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics