Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einzelne Atome als optische Transistoren

13.05.2010
MPQ-Physiker manipulieren die Transparenz von Atomen mit Hilfe von Laserstrahlen.

Die ständig fortschreitende Verkleinerung der Strukturen auf Computerchips führt dazu, dass bald die Grenze erreicht wird, jenseits der die Gesetze der klassischen Physik nicht mehr gelten.

Weltweit gehen daher Wissenschaftler der Frage nach, ob und wie sich Quanteneffekte für die Übertragung und Verarbeitung von Informationen nutzen lassen. Vielversprechende Systeme sind z. B. Quantennetzwerke, in denen einzelne Lichtquanten die Daten zwischen den Knoten – z.B. einzelnen Atomen – übertragen. Dort werden die Informationen dann gespeichert und verarbeitet.

Ein wichtiges Element bei der Entwicklung und Konzeption solcher Systeme ist die „Elektromagnetisch Induzierte Transparenz (EIT)“. Dieses Phänomen erlaubt es, die optischen Eigenschaften von atomaren Medien mit Hilfe von Licht drastisch zu verändern. Bislang wurde dieser Effekt nur an größeren Ensembles aus vielen hunderttausend Atomen nachgewiesen. Erstmals hat jetzt ein Team um Prof. Gerhard Rempe, Direktor am Max-Planck-Institut für Quantenoptik und Leiter der Abteilung Quantendynamik, gezeigt, dass sich auch die optische Transparenz einzelner, in einem Mikroresonator gefangenen Atome mit Laserpulsen quasi per Knopfdruck kontrollieren lässt (Nature, Advanced Online Publication, DOI: 10.1038 /nature09093 May 2010). Dieses Ergebnis ist ein Meilenstein in der Entwicklung von Werkzeugen für die Quanteninformationsverarbeitung; es vertieft aber auch das Verständnis darüber, wie das Quantenverhalten einzelner Atome durch Licht gesteuert werden kann.

Der Begriff der „Elektromagnetisch Induzierten Transparenz“ beschreibt den Effekt, dass die Wechselwirkung zwischen einem schwachen Laserfeld und einem atomaren Medium durch ein zweites Laserfeld kohärent gesteuert und manipuliert werden kann. Um diesen Effekt zu erzielen, wird in der Praxis das Medium mit zwei Laserstrahlen beleuchtet: Unter dem Einfluss eines Kontroll-Lasers wird das Medium für den schwachen Teststrahl transparent. Darüber hinaus kann der EIT-Effekt dazu genutzt werden, Quanteninformation mit Hilfe von Lichtpulsen in Atomen zu speichern und wieder auszulesen. Damit lassen sich Schnittstellen zwischen den „fliegenden“, die Information übertragenden Photonen und den stationären, als Speicherbausteine genutzten Atomen verwirklichen.

In allen bisherigen Untersuchungen wurde der EIT-Effekt an Ensembles aus sehr vielen Atomen demonstriert. In dem hier beschriebenen Experiment dagegen wird ein einzelnes Rubidium-Atom über längere Zeit in einem von zwei Spiegeln höchster Güte gebildeten Resonator eingefangen. Durch die Vielfachreflexionen wird die Licht-Materie-Wechselwirkung erheblich verstärkt, sodass Resonator und Atom ein stark gekoppeltes System bilden. Entlang der Resonatorachse wird nun Laserlicht eingestrahlt. Im Fall eines leeren Resonators wird das gesamte Licht durchgelassen. Die Anwesenheit eines Atoms führt dagegen dazu, dass das Licht reflektiert wird und die Transmission sinkt. Wird das Atom nun zusätzlich senkrecht zur Resonatorachse mit einem Kontroll-Laser beleuchtet, während die Bedingung für EIT erfüllt ist, wird das Atom wieder durchsichtig und maximale Transmission erzielt. Das einzelne Atom arbeitet also wie ein Transistor: es steuert, ob der Resonator Licht durchlässt oder nicht.

In weiteren Experimenten gelang es den Wissenschaftlern um Prof. Gerhard Rempe, diesen EIT-Effekt auch mit einer kontrollierten Zahl von Atomen im Resonator zu erzielen. „ Die Anwendung des EIT-Effekts auf eine gezielt eingestellte Zahl von Atomen gibt uns die Möglichkeit, viele Quanteneigenschaften des von dem Resonator durchgelassenen Lichtes zu steuern“, erklärt Martin Mücke, Doktorand am Experiment. „Gewöhnlich können Photonen nicht miteinander in Wechselwirkung treten. Mit unserem Experiment können wir ein lang erstrebtes Ziel erreichen: eine starke Wechselwirkung zwischen Photonen, die von einem einzelnen Atom vermittelt wird. Dieser Aufbau ist ein potentieller Baustein für den Quantencomputer der Zukunft.“ Olivia Meyer-Streng

Originalveröffentlichung:
Electromagnetically induced transparency with single atoms in a cavity
M. Mücke, E. Figueroa, J. Bochmann, C. Hahn, K. Murr, S. Ritter, C. J. Villas-Boas und G. Rempe.

Nature, Advance Online Publication, DOI: 10.1038/nature09093, Mai 2010

Kontakt:
Prof. Dr. Gerhard Rempe
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 - 89 / 32905 - 701
Fax: +49 - 89 / 32905 – 311
E-Mail: gerhard.rempe@mpq.mpg.de
Dr. Eden Figueroa
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 - 241
E-Mail: eden.figueroa@mpq.mpg.de
Dipl. Phys. Martin Mücke
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 - 356
E-Mail: martin.muecke@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Beim Phasenübergang benutzen die Elektronen den Zebrastreifen
17.12.2018 | Universität Stuttgart

nachricht Wenn sich Atome zu nahe kommen
17.12.2018 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wenn sich Atome zu nahe kommen

„Dass ich erkenne, was die Welt im Innersten zusammenhält“ - dieses Faust’sche Streben ist durch die Rasterkraftmikroskopie möglich geworden. Bei dieser Mikroskopiemethode wird eine Oberfläche durch mechanisches Abtasten abgebildet. Der Abtastsensor besteht aus einem Federbalken mit einer atomar scharfen Spitze. Der Federbalken wird in eine Schwingung mit konstanter Amplitude versetzt und Frequenzänderungen der Schwingung erlauben es, kleinste Kräfte im Piko-Newtonbereich zu messen. Ein Newton beträgt zum Beispiel die Gewichtskraft einer Tafel Schokolade, und ein Piko-Newton ist ein Millionstel eines Millionstels eines Newtons.

Da die Kräfte nicht direkt gemessen werden können, sondern durch die sogenannte Kraftspektroskopie über den Umweg einer Frequenzverschiebung bestimmt werden,...

Im Focus: Datenspeicherung mit einzelnen Molekülen

Forschende der Universität Basel berichten von einer neuen Methode, bei der sich der Aggregatzustand weniger Atome oder Moleküle innerhalb eines Netzwerks gezielt steuern lässt. Sie basiert auf der spontanen Selbstorganisation von Molekülen zu ausgedehnten Netzwerken mit Poren von etwa einem Nanometer Grösse. Im Wissenschaftsmagazin «small» berichten die Physikerinnen und Physiker von den Untersuchungen, die für die Entwicklung neuer Speichermedien von besonderer Bedeutung sein können.

Weltweit laufen Bestrebungen, Datenspeicher immer weiter zu verkleinern, um so auf kleinstem Raum eine möglichst hohe Speicherkapazität zu erreichen. Bei fast...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: Quantenkryptographie ist bereit für das Netz

Wiener Quantenforscher der ÖAW realisierten in Zusammenarbeit mit dem AIT erstmals ein quantenphysikalisch verschlüsseltes Netzwerk zwischen vier aktiven Teilnehmern. Diesen wissenschaftlichen Durchbruch würdigt das Fachjournal „Nature“ nun mit einer Cover-Story.

Alice und Bob bekommen Gesellschaft: Bisher fand quantenkryptographisch verschlüsselte Kommunikation primär zwischen zwei aktiven Teilnehmern, zumeist Alice...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung 2019 in Essen: LED Produktentwicklung – Leuchten mit aktuellem Wissen

14.12.2018 | Veranstaltungen

Pro und Contra in der urologischen Onkologie

14.12.2018 | Veranstaltungen

Konferenz zu Usability und künstlicher Intelligenz an der Universität Mannheim

13.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kommunikation zwischen neuronalen Netzwerken

17.12.2018 | Biowissenschaften Chemie

Beim Phasenübergang benutzen die Elektronen den Zebrastreifen

17.12.2018 | Physik Astronomie

Pharmazeuten erzielen Durchbruch bei Suche nach magensaftbeständigen Zusätzen für Medikamente

17.12.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics