Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein einzelnes Atom vermittelt starke Wechselwirkungen zwischen Lichtquanten

28.06.2018

Physiker am MPQ in Garching beobachten in einem Atom-Resonator-System starke Wechselwirkungen zwischen verschiedenfarbigen Photonen.

Wer wäre nicht gerne im Besitz eines Lichtschwerts? Diese aus der Science-Fiction stammende Idee mag uns geradezu begeistern, doch ihre technische Umsetzung ist noch in weiter Ferne. Denn Lichtquanten – sogenannte Photonen – treten nicht miteinander in Wechselwirkung. Schon im Alltag machen wir die Erfahrung, dass sich zwei Lichtstrahlen ungehindert kreuzen können, egal, ob es sich bei ihren Quellen um traditionelle Leuchten oder um Laser handelt.


Doktorand Nicolas Tolazzi vor dem Experiment, in der Hand ein Spielzeug-Lichtschwert.

Foto: MPQ, Abt. Quantendynamik

Eben diese Eigenschaft macht Photonen zu geeigneten Trägern von Quanteninformation für Quantenkommunikation und Quantencomputer. Für die Verarbeitung von Quanteninformation sind allerdings kontrollierte Wechselwirkungen zwischen den Photonen an sogenannten Quantenknoten erforderlich, welche die Rechenschritte ausführen.

Physiker der Abteilung Quantendynamik am Max-Planck-Institut für Quantenoptik haben jetzt diese kontrollierte Wechselwirkung zwischen verschiedenfarbigen Lichtstrahlen auf dem Level einzelner Photonen nachgewiesen. Mit Hilfe eines in einem optischen Resonator gespeicherten Atoms beobachteten sie zwei Bereiche, in denen sich die Lichtfelder entweder gegenseitig blockieren oder das System gemeinsam passieren. Eine unmittelbare Anwendung dieses Effekts ist, wie die Wissenschaftler zeigten, ein optischer Schalter, bei dem ein Strahl den anderen ausschalten kann.

Trotz ihres Teilchencharakters verfügen Photonen weder über eine Masse noch über eine elektrische Ladung und können demzufolge nicht miteinander „sprechen“. Mit elektrisch geladenen Materieteilchen können sie jedoch aufgrund ihres elektrischen Feldes in Wechselwirkung treten. Wenn diese nichtlinear und ausreichend stark ist, kann sie ihrerseits genutzt werden, um eine Wechselwirkung zwischen Lichtquanten zu vermitteln.

Der wahrscheinlich stärkste Effekt lässt sich erzielen, wenn das Atom nur zwei Energieniveaus besitzt, den Grundzustand und einen angeregten. Denn dann führt die Aufnahme eines ersten Photons dazu, dass das Atom zu einem Emitter wird. D.h., die Transmission eines Photons hängt davon ab, ob zuvor ein anderes da gewesen ist.

Die große Herausforderung bestand in den vergangenen 30 Jahren darin, die entsprechende Wechselwirkung, die bei einem einzelnen Atom im freien Raum vernachlässigbar ist, ausreichend groß zu machen. Befindet sich das Atom dagegen zwischen zwei hoch-reflektierenden Spiegeln, dann kommt das eingestrahlte Photon immer wieder am Atom vorbei und ist gleichzeitig eingeschlossen in einem kleinen Volumen in dessen nächster Umgebung. Diese Technik führt zu einer starken Wechselwirkung auf dem Einzel-Photonen-Level. Solange sich diese aber auf gleichartige Photonen aus einem Laserstrahl beschränkte, war der Effekt vor allem an der Photonen-Statistik zu erkennen, Beispiele dafür sind die Einzel-Photon und die Zwei-Photonen-Blockade.

Strahlt man in diesen aus zwei Spiegeln geformten Resonator jedoch ein zweites Lichtfeld mit einer anderen Wellenlänge ein, dann lässt sich, bei einer geeigneten Energielevel-Struktur, eine Wechselwirkung zwischen zwei verschiedenfarbigen Photonen realisieren. Christoph Hamsen und Kollegen gelang es, die technischen Herausforderungen zu meistern und ein sogenanntes N-System zu verwirklichen, an dem sie neuartige Effekte der gegenseitigen Blockade der Photonen bzw. ihres nur gemeinsam möglichen Durchgangs beobachteten. Im Falle der Blockade arbeitete das System wie ein optischer Schalter, bei dem jedes Lichtfeld das andere ein- oder ausschalten kann.

Diese Effekte beruhen auf der neuartigen Energielevel-Struktur des Systems, das sich aus der starken Kopplung von zwei Lichtfeldern und dem Atom ergibt. In diesem Level-Schema korrespondiert jeder einzeln anregbare Energiezustand mit einer spezifischen Kombination der Photonenzahlen in den beiden Strahlen.

Während also Lichtschwerter weiterhin Science-Fiction bleiben, weist das neue System kohärente Wechselwirkung zwischen Photonen auf. Sein doppelt nicht-lineares Niveauschema ebnet den Weg zu nicht-linearer Quanten-Sensorik, bei der die Zahl der Photonen in dem einen Strahl ein Maß für die Zahl der Photonen in dem anderen Strahl ist.

Originalveröffentlichung:

Christoph Hamsen, Karl Nicolas Tolazzi, Tatjana Wilk, and Gerhard Rempe
Strong coupling between photons of two light fields mediated by one atom
Nature Physics, http://dx.doi.org/10.1038/s41567-018-0181-1

Kontakt:
Dr. Tatjana Wilk
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 (0)89 / 3290 5670
E-Mail: tatjana.wilk@mpq.mpg.de

Nicolas Tolazzi
Max-Planck-Institut für Quantenoptik
Tel.: +49 (0)89 / 3290 5296
E-Mail: nicolas.tolazzi@mpq.mpg.de

Prof. Dr. Gerhard Rempe
Direktor am Max-Planck-Institut für Quantenoptik
Tel.: +49 (0)89 / 3290 5701
E-Mail: gerhard.rempe@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt
03.07.2020 | Universität Wien

nachricht Physiker blicken mit Pikoskope in das Innere der atomaren Materie
01.07.2020 | Universität Rostock

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

Ein internationales Team von Wissenschaftern aus Österreich, Deutschland und der Ukraine hat ein neues supraleitendes System gefunden, in dem sich magnetische Flussquanten mit Geschwindigkeiten von 10-15 km/s bewegen können. Dies erschließt Untersuchungen der reichen Physik nichtlinearer kollektiver Systeme und macht einen Nb-C-Supraleiter zu einem idealen Materialkandidaten für Einzelphotonen-Detektoren. Die Ergebnisse sind in Nature Communications veröffentlicht.

Supraleitung ist ein physikalisches Phänomen, das bei niedrigen Temperaturen in vielen Materialien auftritt und das sich durch einen verschwindenden...

Im Focus: Elektronen auf der Überholspur

Solarzellen auf Basis von Perowskitverbindungen könnten bald die Stromgewinnung aus Sonnenlicht noch effizienter und günstiger machen. Bereits heute übersteigt die Labor-Effizienz dieser Perowskit-Solarzellen die der bekannten Silizium-Solarzellen. Ein internationales Team um Stefan Weber vom Max-Planck-Institut für Polymerforschung (MPI-P) in Mainz hat mikroskopische Strukturen in Perowskit-Kristallen gefunden, die den Ladungstransport in der Solarzelle lenken können. Eine geschickte Ausrichtung dieser „Elektronen-Autobahnen“ könnte Perowskit-Solarzellen noch leistungsfähiger machen.

Solarzellen wandeln das Licht der Sonne in elektrischen Strom um. Dabei wird die Energie des Lichts von den Elektronen des Materials im Inneren der Zelle...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: Das leichteste elektromagnetische Abschirmmaterial der Welt

Empa-Forschern ist es gelungen, Aerogele für die Mikroelektronik nutzbar zu machen: Aerogele auf Basis von Zellulose-Nanofasern können elektromagnetische Strahlung in weiten Frequenzbereichen wirksam abschirmen – und sind bezüglich Gewicht konkurrenzlos.

Elektromotoren und elektronische Geräte erzeugen elektromagnetische Felder, die bisweilen abgeschirmt werden müssen, um benachbarte Elektronikbauteile oder die...

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz QuApps zeigt Status Quo der Quantentechnologie

02.07.2020 | Veranstaltungen

Virtuelles Meeting mit dem BMBF: Medizintechnik trifft IT auf der DMEA sparks 2020

17.06.2020 | Veranstaltungen

Digital auf allen Kanälen: Lernplattformen, Learning Design, Künstliche Intelligenz in der betrieblichen Weiterbildung, Chatbots im B2B

17.06.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der sechste Sinn der Tiere: Ein Frühwarnsystem für Erdbeben?

03.07.2020 | Biowissenschaften Chemie

Effizient, günstig und ästhetisch: 
Forscherteam baut Elektroden aus Laubblättern

03.07.2020 | Energie und Elektrotechnik

Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

03.07.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics