Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein einzelnes Atom vermittelt starke Wechselwirkungen zwischen Lichtquanten

28.06.2018

Physiker am MPQ in Garching beobachten in einem Atom-Resonator-System starke Wechselwirkungen zwischen verschiedenfarbigen Photonen.

Wer wäre nicht gerne im Besitz eines Lichtschwerts? Diese aus der Science-Fiction stammende Idee mag uns geradezu begeistern, doch ihre technische Umsetzung ist noch in weiter Ferne. Denn Lichtquanten – sogenannte Photonen – treten nicht miteinander in Wechselwirkung. Schon im Alltag machen wir die Erfahrung, dass sich zwei Lichtstrahlen ungehindert kreuzen können, egal, ob es sich bei ihren Quellen um traditionelle Leuchten oder um Laser handelt.


Doktorand Nicolas Tolazzi vor dem Experiment, in der Hand ein Spielzeug-Lichtschwert.

Foto: MPQ, Abt. Quantendynamik

Eben diese Eigenschaft macht Photonen zu geeigneten Trägern von Quanteninformation für Quantenkommunikation und Quantencomputer. Für die Verarbeitung von Quanteninformation sind allerdings kontrollierte Wechselwirkungen zwischen den Photonen an sogenannten Quantenknoten erforderlich, welche die Rechenschritte ausführen.

Physiker der Abteilung Quantendynamik am Max-Planck-Institut für Quantenoptik haben jetzt diese kontrollierte Wechselwirkung zwischen verschiedenfarbigen Lichtstrahlen auf dem Level einzelner Photonen nachgewiesen. Mit Hilfe eines in einem optischen Resonator gespeicherten Atoms beobachteten sie zwei Bereiche, in denen sich die Lichtfelder entweder gegenseitig blockieren oder das System gemeinsam passieren. Eine unmittelbare Anwendung dieses Effekts ist, wie die Wissenschaftler zeigten, ein optischer Schalter, bei dem ein Strahl den anderen ausschalten kann.

Trotz ihres Teilchencharakters verfügen Photonen weder über eine Masse noch über eine elektrische Ladung und können demzufolge nicht miteinander „sprechen“. Mit elektrisch geladenen Materieteilchen können sie jedoch aufgrund ihres elektrischen Feldes in Wechselwirkung treten. Wenn diese nichtlinear und ausreichend stark ist, kann sie ihrerseits genutzt werden, um eine Wechselwirkung zwischen Lichtquanten zu vermitteln.

Der wahrscheinlich stärkste Effekt lässt sich erzielen, wenn das Atom nur zwei Energieniveaus besitzt, den Grundzustand und einen angeregten. Denn dann führt die Aufnahme eines ersten Photons dazu, dass das Atom zu einem Emitter wird. D.h., die Transmission eines Photons hängt davon ab, ob zuvor ein anderes da gewesen ist.

Die große Herausforderung bestand in den vergangenen 30 Jahren darin, die entsprechende Wechselwirkung, die bei einem einzelnen Atom im freien Raum vernachlässigbar ist, ausreichend groß zu machen. Befindet sich das Atom dagegen zwischen zwei hoch-reflektierenden Spiegeln, dann kommt das eingestrahlte Photon immer wieder am Atom vorbei und ist gleichzeitig eingeschlossen in einem kleinen Volumen in dessen nächster Umgebung. Diese Technik führt zu einer starken Wechselwirkung auf dem Einzel-Photonen-Level. Solange sich diese aber auf gleichartige Photonen aus einem Laserstrahl beschränkte, war der Effekt vor allem an der Photonen-Statistik zu erkennen, Beispiele dafür sind die Einzel-Photon und die Zwei-Photonen-Blockade.

Strahlt man in diesen aus zwei Spiegeln geformten Resonator jedoch ein zweites Lichtfeld mit einer anderen Wellenlänge ein, dann lässt sich, bei einer geeigneten Energielevel-Struktur, eine Wechselwirkung zwischen zwei verschiedenfarbigen Photonen realisieren. Christoph Hamsen und Kollegen gelang es, die technischen Herausforderungen zu meistern und ein sogenanntes N-System zu verwirklichen, an dem sie neuartige Effekte der gegenseitigen Blockade der Photonen bzw. ihres nur gemeinsam möglichen Durchgangs beobachteten. Im Falle der Blockade arbeitete das System wie ein optischer Schalter, bei dem jedes Lichtfeld das andere ein- oder ausschalten kann.

Diese Effekte beruhen auf der neuartigen Energielevel-Struktur des Systems, das sich aus der starken Kopplung von zwei Lichtfeldern und dem Atom ergibt. In diesem Level-Schema korrespondiert jeder einzeln anregbare Energiezustand mit einer spezifischen Kombination der Photonenzahlen in den beiden Strahlen.

Während also Lichtschwerter weiterhin Science-Fiction bleiben, weist das neue System kohärente Wechselwirkung zwischen Photonen auf. Sein doppelt nicht-lineares Niveauschema ebnet den Weg zu nicht-linearer Quanten-Sensorik, bei der die Zahl der Photonen in dem einen Strahl ein Maß für die Zahl der Photonen in dem anderen Strahl ist.

Originalveröffentlichung:

Christoph Hamsen, Karl Nicolas Tolazzi, Tatjana Wilk, and Gerhard Rempe
Strong coupling between photons of two light fields mediated by one atom
Nature Physics, http://dx.doi.org/10.1038/s41567-018-0181-1

Kontakt:
Dr. Tatjana Wilk
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 (0)89 / 3290 5670
E-Mail: tatjana.wilk@mpq.mpg.de

Nicolas Tolazzi
Max-Planck-Institut für Quantenoptik
Tel.: +49 (0)89 / 3290 5296
E-Mail: nicolas.tolazzi@mpq.mpg.de

Prof. Dr. Gerhard Rempe
Direktor am Max-Planck-Institut für Quantenoptik
Tel.: +49 (0)89 / 3290 5701
E-Mail: gerhard.rempe@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Zwei erdähnliche Planeten um einen der kleinsten Sterne – und die Möglichkeit, von dort aus die Erde nachzuweisen
18.06.2019 | Max-Planck-Institut für Astronomie

nachricht Stabilität und Mobilität: Zwei Flüssigkeiten sind der Schlüssel
17.06.2019 | Rheinisch-Westfälische Technische Hochschule Aachen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Additive Fertigung zur Herstellung von Triebwerkskomponenten für die Luftfahrt

Globalisierung und Klimawandel sind zwei der großen Herausforderungen für die Luftfahrt. Der »European Flightpath 2050 – Europe’s Vision for Aviation« der Europäischen Kommission für Forschung und Innovation sieht für Europa eine Vorreiterrolle bei der Vereinbarkeit einer angemessenen Mobilität der Fluggäste, Sicherheit und Umweltschutz vor. Dazu müssen sich Design, Fertigung und Systemintegration weiterentwickeln. Einen vielversprechenden Ansatz bietet eine wissenschaftliche Kooperation in Aachen.

Das Fraunhofer-Institut für Produktionstechnologie IPT und der Lehrstuhl für Digital Additive Production DAP der RWTH Aachen entwickeln zurzeit eine...

Im Focus: Die verborgene Struktur des Periodensystems

Die bekannte Darstellung der chemischen Elemente ist nur ein Beispiel, wie sich Objekte ordnen und klassifizieren lassen.

Das Periodensystem der Elemente, das die meisten Chemiebücher abbilden, ist ein Spezialfall. Denn bei dieser tabellarischen Übersicht der chemischen Elemente,...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungen

Teilautonome Roboter für die Dekontamination - den Stand der Forschung bei Live-Vorführungen am 25.6. erleben

18.06.2019 | Veranstaltungen

KI meets Training

18.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Saubere Lunge dank Laserprozessabsaugung

18.06.2019 | Maschinenbau

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungsnachrichten

Ionenkanal mit Türsteher: Calcium-Ionen blockieren Kanalöffnung in Abhängigkeit vom pH-Wert

18.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics