Physiker der Universität Leipzig haben in einem selbst entwickelten Verfahren dünne Schichten von Kupferiodid hergestellt und dabei ganz neue, bisher unbekannte Eigenschaften dieses Materials entdeckt. Sie fanden unter anderem heraus, dass die thermoelektrischen Eigenschaften von Kupferiodid etwa tausendmal besser sind als die bisher bekannter, vergleichbarer Materialien. Das mache Kupferiodid zu einem herausragenden multi-funktionalem Material: durchsichtig, halbleitend oder hoch leitend und thermoelektrisch aktiv. Der Stoff, der das Kupfersalz der Jodwasserstoffsäure ist, eigne sich damit auch zur unsichtbaren Energieerzeugung, etwa durch Körperwärme.
Die Forscher haben ihre neuen Erkenntnisse gerade in dem renommierten Fachjournal "Nature Communications" veröffentlicht. "Von besonderer Bedeutung ist dabei, dass Kupferiodid sowohl durchsichtig als auch ein sogenannter p-Leiter ist. In einem p-Leiter findet die elektrische Leitung durch positive geladene 'Löcher' statt und nicht durch negativ geladene Elektronen.
In einem thermoelektrischen Bauelement wird eine Temperaturdifferenz und ein damit verbundener Wärmefluss in elektrische Energie verwandelt", erklärt der aus China stammende Nachwuchswissenschaftler Dr. Chang Yang vom Felix-Bloch-Institut für Festkörperphysik der Universität Leipzig, der bei den Forschungsarbeiten federführend war. Er arbeitete mit der Technischen Hochschule Deggendorf und der Northumbria University in Newcastle upon Tyne in Großbritannien zusammen.
Die Arbeitsgruppe um Physiker Prof. Dr. Marius Grundmann von der Universität Leipzig forscht schon seit Jahren mit modernen Herstellungs- und Analyseverfahren intensiv zu den Eigenschaften des Kupferiodids. So gelang es unter anderem, die kombinierte Leitfähigkeit und Transparenz deutlich zu erhöhen.
Auf der Basis der aktuellen Forschungsergebnisse können mit Kupferiodid nun Energieerzeuger gebaut werden, die zum Betrieb transparenter Schaltkreise dienen. Diese wurden auch an der Universität Leipzig entwickelt. Diese eignen sich unter anderem zur Anwendung auf Fenstern und in Displays.
In den Materialien, aus denen sie bestehen, sind die Elektronen zudem viel schneller als in amorphem Silizium, dem Standard-Material für Dünnfilm-Transistoren, und die Schaltkreise daraus sind energiesparender. Die dünnen Kupferiodid-Schichten sind außerdem auf Polymer-Folie flexibel und eignen sich damit beispielsweise für die Nutzung in Kleidung, auf intelligenten Pflastern oder in biegsamen Displays.
Karl Wilhelm Bädeker entdeckte um 1905 während seiner Habilitation an der Universität Leipzig Kupferiodid als weltweit ersten transparenten Leiter.
Originaltitel der Veröffentlichung in "Nature Communications":
"Transparent Flexible Thermoelectric Material Based on Non-toxic Earth-Abundant p-Type Copper Iodide Thin Film", doi: 10.1038/ncomms16076
Weitere Informationen:
Prof. Dr. Marius Grundmann
Telefon: +49 341 97-32650
E-Mail: grundmann@physik.uni-leipzig.de
Web: www.uni-leipzig.de/~hlp
Dr. Chang Yang
Telefon: +49 341 97 32642
E-Mail: chang.yang@physik.uni-leipzig.de
https://www.nature.com/articles/ncomms16076
Susann Huster | Universität Leipzig
Weitere Informationen:
http://www.uni-leipzig.de
Weitere Berichte zu: > Analyseverfahren > Elektronen > Schaltkreise > Silizium > Thermoelectric > elektrische Energie > p-Leiter
Physiker gelingt erstmalig Vorstoß in höhere Dimensionen
19.02.2019 | Universität Rostock
Neue Himmelskarte veröffentlicht
19.02.2019 | Universität Bielefeld
Mit additiven Verfahren wie dem 3D-Druck lässt sich nahezu jede beliebige Struktur umsetzen – sogar im Nanobereich. Diese können, je nach verwendeter „Tinte“, die unterschiedlichsten Funktionen erfüllen: von hybriden optischen Chips bis zu Biogerüsten für Zellgewebe. Im gemeinsamen Exzellenzcluster „3D Matter Made to Order” wollen Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) und der Universität Heidelberg die dreidimensionale additive Fertigung auf die nächste Stufe heben: Ziel ist die Entwicklung neuer Technologien, die einen flexiblen, digitalen Druck ermöglichen, der mit Tischgeräten Strukturen von der molekularen bis zur makroskopischen Ebene umsetzen kann.
„Der 3D-Druck bietet gerade im Mikro- und Nanobereich enorme Möglichkeiten. Die Herausforderungen, um diese zu erschließen, sind jedoch ebenso gewaltig“, sagt...
Mithilfe von Kunstdiamanten gelang einem internationalen Forscherteam ein weiterer wichtiger Schritt in Richtung Hightech-Anwendung von Quantentechnologie: Erstmals konnten die Wissenschaftler und Wissenschaftlerinnen den Quantenzustand eines einzelnen Qubits in Diamanten elektrisch zu messen. Ein Qubit gilt als die Grundeinheit der Quanteninformation. Die Ergebnisse der Studie, die von der Universität Ulm koordiniert wurde, erschienen jüngst in der renommierten Fachzeitschrift Science.
Die Quantentechnologie gilt als die Technologie der Zukunft. Die wesentlichen Bausteine für Quantengeräte sind Qubits, die viel mehr Informationen verarbeiten...
Um die bekannten Anomalien in Wasser zu erklären, gehen manche Forscher davon aus, dass Wasser auch bei Umgebungsbedingungen aus einer Mischung von zwei Phasen besteht. Neue röntgenspektroskopische Analysen an BESSY II, der ESRF und der Swiss Light Source zeigen jedoch, dass dies nicht der Fall ist. Bei Raumtemperatur und normalem Druck bilden die Wassermoleküle ein fluktuierendes Netz mit durchschnittlich je 1,74 ± 2.1% Donator- und Akzeptor-Wasserstoffbrückenbindungen pro Molekül, die eine tetrahedrische Koordination zwischen nächsten Nachbarn ermöglichen.
Wasser ist das „Element“ des Lebens, die meisten biologischen Prozesse sind auf Wasser angewiesen. Dennoch gibt Wasser noch immer Rätsel auf. So dehnt es sich...
Bislang wurden OLEDS ausschließlich als neue Beleuchtungstechnologie für den Einsatz in Leuchten und Lampen verwendet. Dabei bietet die organische Technologie viel mehr: Als Lichtoberfläche, die sich mit den unterschiedlichsten Materialien kombinieren lässt, kann sie Funktionalität und Design unzähliger Produkte verändern und revolutionieren. Beispielhaft für die vielen Anwendungsmöglichkeiten präsentiert das Fraunhofer FEP gemeinsam mit der EMDE development of light GmbH im Rahmen des EU-Projektes PI-SCALE auf der Münchner LOPEC (19. bis 21. März 2019), erstmals in Textildesign integrierte hybride OLEDs.
Als Anbieter von Forschungs- und Entwicklungsdienstleistungen auf dem Gebiet der organischen Elektronik setzt sich das Fraunhofer FEP schon lange mit der...
Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.
The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...
Anzeige
Anzeige
Unendliche Weiten: Geophysiker nehmen den Weltraum ins Visier
21.02.2019 | Veranstaltungen
Tagung rund um zuverlässige Verbindungen
20.02.2019 | Veranstaltungen
LastMileLogistics Conference in Frankfurt befasst sich mit Lieferkonzepten für Ballungsräume
19.02.2019 | Veranstaltungen
Materialdesign in 3D: vom Molekül bis zur Makrostruktur
21.02.2019 | Verfahrenstechnologie
Neue Mechanismen der Regulation von Nervenstammzellen
21.02.2019 | Biowissenschaften Chemie
Fledermäusen auf der Spur: Miniatur-Sensoren entschlüsseln Mutter-Kind-Beziehung
21.02.2019 | Biowissenschaften Chemie