Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dreikampf in der Quantenwelt

12.04.2016

Bei Phasenübergängen, etwa zwischen Wasser und Wasserdampf, konkurriert die Bewegungsenergie mit der Anziehungsenergie unmittelbar benachbarter Moleküle. Physiker der ETH Zürich haben jetzt Quanten-Phasenübergänge studiert, bei denen auch weit entfernte Teilchen einander beeinflussen.

Wenn man Wasser in einem Topf langsam bis zum Kochen erhitzt, so spielt sich in der Flüssigkeit ein spannender Zweikampf der Energien ab. Zum einen ist da die Wechselwirkungsenergie, welche die Wassermoleküle aufgrund deren gegenseitiger Anziehung zusammenhalten will; zum anderen aber versucht die durch das Erhitzen immer grösser werdende Bewegungsenergie, die Moleküle voneinander zu trennen.


Eine künstliche Quantenwelt aus Atomen und Licht: Durch das komplexe Wechselspiel zwischen kurz- und langreichweitiger Wechselwirkung ordnen sich die Atome (rot) auf einem Schachbrettmuster an.

ETH Zürich / Tobias Donner

Unterhalb des Siedepunktes behält die Wechselwirkungsenergie die Oberhand, doch sobald die Bewegungsenergie gewinnt, kocht das Wasser und wird dadurch zu Wasserdampf. Dieser Vorgang wird auch als Phasenübergang bezeichnet. Die Wechselwirkung betrifft dabei nur Wassermoleküle, die sich in unmittelbarer Nachbarschaft zueinander befinden.

Forscher um Tilman Esslinger, Professor am Institut für Quantenelektronik der ETH Zürich, und Tobias Donner, Wissenschaftler in seiner Gruppe, haben nun gezeigt, wie man Teilchen dazu bringen kann, einander auch über grössere Entfernungen zu «spüren». Durch Hinzufügen solcher langreichweitiger Wechselwirkungen konnten die Physiker neuartige Phasenübergange beobachten, die sich aus Energie-Dreikämpfen ergeben.

Künstliche Quantenwelten

Die Experimente der Zürcher Physiker finden freilich nicht in einem Kochtopf statt, sondern in einem «Quantensimulator», einer künstlich erschaffenen Quantenwelt. Die Forscher kühlen dazu eine winzige Wolke aus Rubidium-Atomen auf Temperaturen knapp über dem absoluten Nullpunkt ab und fangen sie dann in einem kristallähnlichen Gitter aus Laserstrahlen ein.

Die Wechselwirkungsenergie beruht auf Zusammenstössen zwischen Atomen, die zwischen den Gitterplätzen hin und her wandern. Die Bewegungsenergie der Atome wiederum kann durch die Stärke der Laserstrahlen gesteuert werden, die bestimmt, wie beweglich die Atome im Inneren des Gitters sind.

Um schliesslich eine Wechselwirkung zwischen weit entfernten Atomen herbeizuführen, benutzen Renate Landig, Doktorandin in Esslingers Arbeitsgruppe, und ihre Kollegen einen technischen Trick. Mit Hilfe zweier hochreflektierender Spiegel bauten sie einen Resonator, der dafür sorgt, dass Lichtteilchen, die von einem der Atome abgelenkt werden, mehrmals durch die Rubidium-Wolke fliegen.

Dadurch kommen früher oder später alle Atome der Wolke mit dem abgelenkten Photon in Kontakt. Sie «spüren» dadurch die Anwesenheit des Ursprungs-Atoms, welches das Photon als erstes abgelenkt hatte. Dieses Spüren auf Distanz kommt einer effektiven Wechselwirkung mit langer Reichweite gleich. Wie stark die Atome auf diese Weise miteinander wechselwirken, lässt sich zudem mittels der Frequenz der Laserstrahlen genau kontrollieren.

«Mit Hilfe dieses Kniffes haben wir nun drei Energieskalen in unserem System, die miteinander konkurrieren: neben der Bewegungsenergie und der Wechselwirkungsenergie zusätzlich auch die Energie der langreichweitigen Wechselwirkung», erklärt Landig. «Indem wir die Bewegungsenergie und die langreichweitige Wechselwirkungsenergie verändern, können wir verschiedene neuartige Quanten-Phasenübergänge studieren.»

Phasenübergänge erster Ordnung

Einige der möglichen Phasenübergänge waren den Forschern bereits bekannt. Wenn zum Beispiel die langreichweitige Wechselwirkung sehr klein ist und die Bewegungsenergie nach und nach erhöht wird, so wechselt der Aggregatzustand der Rubidium-Wolke von einem Mott-Isolator, in dem auf jedem Gitterplatz ein Atom unbeweglich sitzt, zu einer Supraflüssigkeit, in der sich die Atome vollkommen frei bewegen können.

Erhöhen die Forscher dagegen die Energie der langreichweitigen Wechselwirkung, so passiert etwas völlig anderes: Bei einer bestimmten Stärke dieser Wechselwirkung ordnen sich die Atome spontan in einem Schachbrettmuster an, mit jeweils einem leeren Gitterplatz zwischen zwei Atomen. «Das Besondere dabei ist, dass dieser Phasenübergang, ähnlich dem von Wasser zu Wasserdampf, ein Übergang erster Ordnung ist», betont Donner. Bei solchen Phasenübergängen ändert sich eine bestimmte Eigenschaft einer Substanz schlagartig, wogegen bei Übergängen zweiter Ordnung, wie sie bislang in künstlichen Quantensystemen nachgewiesen wurden, die Änderung graduell ist.

Suprasolidität nachgewiesen

Einen weiteren ungewöhnlichen Phasenübergang konnten die Physiker herbeiführen, indem sie sowohl die Bewegungsenergie als auch die langreichweitige Wechselwirkung sehr gross werden liessen. In diesem Fall bildete sich wieder ein Schachbrettmuster im Gitter, doch diesmal bestand zwischen den Atomen eine Phasenkohärenz, das heisst, ihre quantenmechanischen Wellenfunktionen waren synchronisiert. Eine solche Kohärenz wird normalerweise nur beobachtet, wenn sich die Atome relativ frei bewegen können, wie dies etwa im supraflüssigen Zustand der Fall ist. Das gleichzeitige Bestehen eines Schachbrettmusters und der Phasenkohärenz dagegen deutet darauf hin, dass es sich hierbei um eine suprasolide Phase handelt. Der Zwitterzustand der Suprasolidität wurde bereits vor fünfzig Jahren theoretisch vorhergesagt, es erwies sich aber bisher als schwierig, ihn zweifelsfrei nachzuweisen.

In Zukunft werden Esslinger und seine Mitarbeiter solche und andere exotische Effekte in ihrem Quantensimulator genauer untersuchen. Das Ziel der Forscher ist es, einen Überblick über Quantenphänomene in zunehmend komplexen Systemen zu gewinnen. Dieser Prozess geht Hand in Hand mit der Entwicklung und Erforschung von Materialen mit besonderen Eigenschaften.

Die Forschung wurde durchgeführt im Rahmen von TherMiQ [http://www.thermiq2.eu/], einem europäischen Forschungsprojekt, das die Thermodynamik von mesoskopischen offenen Quantensystemen untersucht.

Literaturhinweis

Landig R, Hruby L, Dogra N, Landini M, Mottl R, Donner T, Esslinger T: Quantum phases from competing short- and long-range interactions in an optical lattice, Nature, 11. April 2016, doi: 10.1038/nature17409 [http://dx.doi.org/10.1038/nature17409]

News und Medienstelle | Eidgenössische Technische Hochschule Zürich (ETH Zürich)
Weitere Informationen:
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp
18.10.2019 | Forschungsverbund Berlin e.V.

nachricht Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED
17.10.2019 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics