Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dieses Mal mit speziellem Dreh: Drittes Gravitationswellensignal beobachtet

02.06.2017

Wissenschaftlerinnen und Wissenschaftler der LIGO-Virgo-Collaboration (LVC) haben ein weiteres Mal Gravitationswellen nachgewiesen und damit diesen neuen Bereich der Astronomie nachhaltig gefestigt. In der neuen Ausgabe des Fachjournals „Physical Review Letters“ wird zudem dargestellt, dass erstmals Hinweise darauf entdeckt wurden, auf welche Weise sich die an der Entstehung der Wellen beteiligten Schwarzen Löcher drehen. Die Universität Hamburg ist mit der Arbeitsgruppe von Prof. Dr. Roman Schnabel vom Institut für Laserphysik und Zentrum für Optische Quantentechnologien an dem Forschungsvorhaben beteiligt.

Eine Kollision zweier Schwarzer Löcher sowie die daraus entstehenden Gravitationswellen konnten im Januar 2017 zum dritten Mal nach September und Dezember 2015 nachgewiesen werden. Im aktuellen Fall, der GW170104 genannt wird, waren die zwei Schwarzen Löcher etwa drei Milliarden Lichtjahre entfernt – die weiteste Entfernung aller bisherigen Nachweise. Das neu entstandene Schwarze Loch hat 49 Mal die Masse der Sonne, wobei eine Sonnenmasse ungefähr 1,99 Quadrilliarden Tonnen oder 332.946 Erdmassen entspricht.


Simulation der Kollision von zwei Schwarzen Löchern.

Foto: LIGO

Der nun nachgewiesene Fall gibt zudem erstmals Hinweise darauf, wie sich die zwei Schwarzen Löcher, die dann später ineinander stürzten und dabei die Gravitationswellen erzeugten, gedreht haben. Zwei Schwarze Löcher müssen einander umkreisen, aber nicht nur das – in der Regel dreht sich zusätzlich jedes um die eigene Achse.

Manchmal stimmen diese beiden Richtungen überein (ausgerichteter Spin), sie können aber auch entgegengesetzt rotieren. Wie sich die beiden Schwarzen Löcher im aktuellen Fall genau gedreht haben, ist aus den Daten nicht ersichtlich, aber es gibt Hinweise darauf, dass zumindest eines der Schwarzen Löcher sich entgegensetzt zur Gesamtbewegung des Gebildes gedreht hat. Weitere Untersuchungen zu dieser Frage könnten auch Aufschluss darüber geben, wie ein solches Paar überhaupt zusammenfindet.

Die Universität Hamburg ist mit der Arbeitsgruppe von Prof. Roman Schnabel seit Frühjahr 2015 Mitglied der LIGO Scientific Collaboration (LSC) und der GEO-Kollaboration, die den deutsch-britischen Gravitationswellendetektor GEO600 betreibt. Der Physiker selbst ist seit 2003 Mitglied der GEO-Kollaboration, seit 2005 Mitglied der LSC und seit 2013 Vorsitzender der LSC-Arbeitsgruppe „Quantenrauschen“ und arbeitet an der Universität Hamburg mit seinem Team an der Verbesserung der Messempfindlichkeit von Gravitationswellendetektoren.

Prof. Schnabel entwickelte während seiner Tätigkeit an der Leibniz Universität Hannover die weltweit erste Quelle für Licht mit einem sogenannten „gequetschtem Quantenrauschen“, mit deren Hilfe die Präzision bei Messungen deutlich gesteigert werden kann.

Gravitationswellen geben grundsätzlich Auskunft über die Entstehung und das Wesen der Gravitation. Die Forscherinnen und Forscher hatten im September 2015 erstmals die geheimnisvollen Wellen im All mithilfe der beiden vier Kilometer großen Detektoren des „Laser Interferometer Gravitational-Wave Observatory“ (LIGO) in Livingston und Hanford in den USA beobachten können.

Albert Einstein hatte die Existenz von Gravitationswellen 1916 auf Basis seiner Allgemeinen Relativitätstheorie vorhergesagt. Ihre direkte Beobachtung ermöglicht deshalb eine neue Sicht auf das Universum, denn bisher basierten die Erkenntnisse über das Weltall auf Messungen von elektromagnetischen Wellen wie z. B. Licht oder Gammastrahlung.

LIGO wird durch die „National Science Foundation“ (NSF) finanziert und vom MIT und Caltech betrieben. Auch Einrichtungen aus Deutschland (Max-Planck-Gesellschaft), Großbritannien (Science and Technology Facilities Council) und Australien (Australian Research Council) haben signifikante Beiträge zu dem Projekt geliefert. Insgesamt arbeiten mehr als 1000 Wissenschaftlerinnen und Wissenschaftler aus aller Welt in der LIGO Scientific Collaboration, die die GEO-Kollaboration mit einschließt.

LIGO kooperiert zudem mit „Virgo“, einem Konsortium aus 280 europäischen Forscherinnen und Forschern, das seinen Sitz im European Gravitational Observatory nahe Pisa hat und vom „Centre National de la Recherche Scientifique“ (CNRS), dem „Istituto Nazionale di Fisica Nucleare“ (INFN) und dem Forschungszentrum Nikhef organisiert wird.

Link zur Originalarbeit (nach Ende der Sperrfrist): https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.221101

Für Rückfragen:
Prof. Dr. Roman Schnabel
Universität Hamburg
Institut für Laserphysik und Zentrum für Optische Quantentechnologien
Tel.: +49 40 8998-5102
E-Mail: roman.schnabel@physnet.uni-hamburg.de

Birgit Kruse | idw - Informationsdienst Wissenschaft
Weitere Informationen:
https://www.uni-hamburg.de/newsroom/presse/2017/pm43.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rasende Elektronen unter Kontrolle
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Kometen als Wasserträger für Exoplaneten
15.11.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics