Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Trennung von Gas und Flüssigkeit – im Weltraum eine Herausforderung

20.03.2019

Wissenschaftler des Zentrums für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen testen Apparatur zu Phasentrennung erfolgreich auf dem 33. DLR-Parabelflug und erweitern die strömungsmechanischen Grundlagen für die zukünftige Exploration des Weltraums.

Auf der Erde können wir uns darauf verlassen, dass die Erdanziehungskraft alles im Griff hat: Leichteres Gas von einer schwereren Flüssigkeit zu trennen, gelingt durch den hydrostatischen Druck wie von allein und das ganz verlässlich.


Die ZARM-Crew bei der Experimentdurchführung während des Parabelflugs.

Novespace/Nicolas Courtioux


Detailansicht des Experimentaufbaus mit Strömungskanal, Messstrecke und Messröhrchen.

ZARM / Uni Bremen

Das Gas treibt nach oben auf, die Flüssigkeit sammelt sich automatisch unten an. Ein Vorgang, den wir alltäglich in einem gefüllten Benzintank eines Autos beobachten können, wo der Treibstoff blasenfrei zum Motor geleitet wird. Diese physikalische Gesetzmäßigkeit gerät ins Wanken, wenn wir in den Weltraum blicken.

Die Umgebungsbedingung ist dort vor allem durch Schwerelosigkeit bestimmt. Ein oben und unten gibt es nicht mehr und der hydrostatische Druck bleibt wirkungslos. Dennoch ist es für Satelliten, Raumsonden oder bemannte Explorationsmissionen unerlässlich, eine Phasentrennung von Gas und Flüssigkeit an Bord von Weltraumfahrzeugen sicherzustellen:

Treibwerke müssen gas- und blasenfrei mit Treibstoff versorgt werden, Lebenserhaltungssysteme müssen eine Gasphase von einer Flüssigkeitsphase trennen, Systeme zur Regulierung des Wärmehaushaltes müssen eine Dampfphase von einer Flüssigkeitsphase scheiden und selbst Anlagen, die eines Tages auf Mond oder Mars betrieben werden zur Herstellung oder Umwandlung von (Roh-)Stoffen, müssen so konzipiert sein, dass sie eine Phasentrennung gewährleisten.

Die ZARM-Wissenschaftler entwickelten eine Apparatur, die die Phasentrennung unter Weltraumbedingungen möglich macht und bisheriges Grundlagenwissen zur Handhabung von Flüssigkeiten im All erweitert. Die Testflüssigkeit wurde so ausgewählt, dass sie den Eigenschaften von Raketentreibstoffen, wie sie in der Raumfahrt Anwendung finden, ähnelt und zugleich für den Menschen völlig ungefährlich ist und bei einem Parabelflug verwendet werden darf.

Experimentaufbau und Erkenntnisse:
Der Testaufbau besteht aus einem rechteckigen, ca. fünf Millimeter breiten Kanal als Flüssigkeitsleitung, der entlang einer zehn Zentimeter langen Messstrecke an einer Seite offen zur Umgebungsluft ist. Abgedeckt ist die offene Messstrecke alleinig durch ein sehr feinmaschiges Metallsieb mit nur 14 tausendstel Millimeter großen Poren, das abstrahiert als poröses Medium beschrieben werden kann.

Oben auf dem Sieb sitzt an einer Stelle ein zehn Zentimeter langes und fünf Millimeter breites Messröhrchen auf, das ebenfalls mit Flüssigkeit gefüllt ist. Im Versuch unter Schwerlosigkeit ist zu beobachten, wie die Flüssigkeit aus dem Messrohr durch das Metallsieb in den Strömungskanal gesogen wird, ohne dass über die gesamte offene Messtrecke hinweg Umgebungsluft als Bläschen mit in die Flüssigkeitsphase eindringt.

Hier wirken die Kapillarkraft mit dem Blasendurchbruchsdruck und den Eigenschaften des porösen Mediums zusammen: Die Kapillarkraft – die Eigenschaft von Flüssigkeiten, sich in Spalten und Röhrchen auszubreiten – sorgt zunächst dafür, dass die Flüssigkeit in die feinen Poren des gesamten Metallsiebs kriecht und es mit Flüssigkeit sättigt.

Das Metallsieb fungiert dann wie eine Membran, die Flüssigkeit hindurchtreten lässt, aber gegen Gas sperrt. Voraussetzung dafür ist jedoch, dass der Blasendurchbruchsdruck – auf Englisch Bubble Point – nicht überschritten wird, also jener Punkt, an dem die Umgebungsluft durch das Metallsieb in den Strömungskanal gesogen wird und sich Bläschen im Flüssigkeitsstrom bilden. Der Blasendurchbruchsdruck steht dabei in einer direkten Abhängigkeit zur Größe der Poren des Siebes – je kleiner die Poren, desto größer kann der Druck sein, bis Gas in den Flüssigkeitsstrom eindringt.

Die Parabelflugkampagne:
Die von ZARM-Wissenschaftlern entwickelte Apparatur wurde während der 33. Parabelflugkampagne des Raumfahrtmanagements des Deutschen Zentrums für Luft- und Raumfahrt (DLR) vom 12.-14. März 2019 erfolgreich getestet und bewies ihre volle Funktionsfähigkeit zur Flüssigkeits-Gastrennung.

An drei aufeinanderfolgenden Flugtagen wurden mit dem Airbus 310 ZERO G vom französischen Bordeaux aus über dem Gebiet des Atlantiks mehr als 90 Einzelparabeln geflogen, die den Wissenschaftlern jeweils 22 Sekunden Schwerelosigkeit ermöglichten – eine Experimentumgebung, die nicht nur für die Testapparatur eine Herausforderung darstellte, sondern auch für die Wissenschaftler, die mit an Bord waren und den Versuch schwebend durchführen mussten.

Der menschliche Körper reagiert umgehend auf die Phasen reduzierter Gravitation (Schwerelosigkeit), wenn das Flugzeug in den freien Fall übergeht, und reagiert ebenso auf die Phasen erhöhter Gravitation, die am Beginn und am Ende der Parabeln auftreten. Umso wichtiger war es für die ZARM-Crew, sich auf die Parabelflüge gut vorzubereiten.

Dazu gehörte, eine klare Aufgabenteilung im vierköpfigen Team festzulegen, die Handgriffe zur Steuerung des Experiments einzuüben, die Durchführung der zuvor festgelegten Testparameter zu überwachen und die technische Bereitschaft des Experimentaufbaus sowie die Datengewinnung sicherzustellen.

Relevanz der Ergebnisse:
Der Untersuchungsansatz der ZARM-Wissenschaftler ist der anwendungsbezogenen Grundlagenforschung gewidmet und dient dazu, eine gute Mess- und Beobachtbarkeit strömungsmechanischer Vorgänge zu erreichen. Der gewählte Versuchsaufbau ist daher nicht die Abbildung einer konkreten technischen Ausführung eines Bauteils für Weltraumfahrzeuge.

Mit den Ergebnissen der „Untersuchungen zur Flüssigkeits-Gastrennung unter Anwendung poröser Medien bei kompensierter Gravitation“ wird jedoch eine quantitative Datenbasis geschaffen und bereitgestellt, die eine Übertragung der Erkenntnisse auf konkrete Anwendungen in der Weltraumexploration zulässt und somit eine Basis für innovative Konzepte von Flüssigkeitsleitungen bildet. Ergänzend zu den gewonnen Daten aus der Parabelflugkampagne liegt dem Forschungsteam eine Datenreihe aus Versuchen vor, die zuvor im Fallturm Bremen am ZARM durchgeführt wurden. Das Projekt wird vom DLR-Raumfahrtmanagement gefördert.

Wissenschaftliche Ansprechpartner:

Ansprechpartner für Fragen zum Forschungsprojekt:
Prof. Dr. Michael Dreyer
michael.dreyer@zarm.uni‐bremen.de

Ansprechpartnerin für allgemeine Presseanfragen und Bildmaterial:
Lucie‐Patrizia Arndt
Tel: +49 421 218‐57817 | 0170 5998183
lucie‐patrizia.arndt@zarm.uni‐bremen.de

Weitere Informationen:

https://www.zarm.uni-bremen.de/de/presse/einzelansicht/article/liquid-gas-separa... ZARM-Pressemitteilung mit weiterführendem Bild- und Videomaterial
https://www.dlr.de/dlr/desktopdefault.aspx/tabid-10212/332_read-32733/year-all/#... DLR-Pressemitteilung des zur 33. DLR-Parabelflugkampagne
https://www.dlr.de/rd/desktopdefault.aspx/tabid-2282/3421_read-5230/ DLR-Erklärvideo zu Parabelflügen mit dem A310 ZERO-G

Lucie-Patrizia Arndt | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultraschneller Blick in die Photochemie der Atmosphäre
11.10.2019 | Max-Planck-Institut für Quantenoptik

nachricht Wie entstehen die stärksten Magnete des Universums?
10.10.2019 | Universität Heidelberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Wenn die Erde flüssig wäre

Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“

10.10.2019 | Veranstaltungen

Aktuelle Trends an den Finanzmärkten im Schnelldurchlauf

09.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IZM setzt das E-Auto auf die Überholspur

11.10.2019 | Energie und Elektrotechnik

IVAM-Produktmarkt auf der COMPAMED 2019: Keine Digitalisierung in der Medizintechnik ohne Mikrotechnologien

11.10.2019 | Messenachrichten

Kryptografie für das Auto der Zukunft

11.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics