Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Spitzen-Leistung der Elektronen

15.11.2016

Scharfe Metallspitzen verwendet man, um Elektronen gezielt in eine Richtung zu senden. Ein Quanten-Effekt liefert nun eine neue Methode, die Elektronen-Emission extrem genau zu kontrollieren.

Wenn man Elektronen präzise kontrollieren will, dann lässt man sie aus feinen Metallspitzen austreten – so macht man das etwa in einem Elektronenmikroskop. Seit Kurzem werden solche Metallspitzen auch als hochpräzise Elektronenquellen zur Erzeugung von Röntgenstrahlung verwendet.


Laserpulse werden auf eine Metallspitze geschossen und lösen Elektronen heraus.

FAU Erlangen-Nürnberg

Ein Team der TU Wien entwickelte nun gemeinsam mit einer Forschungsgruppe aus Deutschland (FAU Erlangen-Nürnberg) eine Methode, diese Elektronenemission mit Hilfe zweier Laserpulse viel genauer zu steuern als bisher. Damit wird es jetzt möglich, den Fluss der Elektronen auf extrem kurzen Zeitskalen ein- und auszuschalten.

Nur die Spitze zählt

„Die Grundidee ist ähnlich wie beim Blitzableiter“, erklärt Prof. Christoph Lemell vom Institut für Theoretische Physik der TU Wien. „Das elektrische Feld rund um eine Nadel ist immer genau an der Spitze am größten. Daher schlägt der Blitz in die Spitze des Blitzableiters ein, und aus demselben Grund verlassen Elektronen die Nadel genau an der Spitze.“

Mit modernen Methoden der Nanotechnologie kann man heute extrem feine Nadeln herstellen, ihre Spitze hat eine Ausdehnung von wenigen Nanometern. Man weiß also sehr genau, an welcher Stelle die Elektronen das Metall verlassen. Wichtig ist es zusätzlich nun aber auch, eine genaue Kontrolle darüber zu haben, ob und zu welchem Zeitpunkt die einzelnen Elektronen aus der Metallspitze austreten.

Genau das wird nun mit einer neuen Technik möglich: „Man beschießt die Metallspitze mit zwei verschiedenen Laserpulsen“, erklärt Florian Libisch (TU Wien). Die Farben dieser Laser wählt man so, dass die Lichtteilchen des einen Lasers genau doppelt so viel Energie haben wie die Lichtteilchen des anderen Lasers. Wichtig ist außerdem, dass die Lichtwellen der beiden Laser perfekt im gleichen Takt schwingen.

Das Team von der TU Wien konnte aufgrund von Computersimulationen vorhersagen, dass sich die zeitliche Verzögerung eines der beiden Pulse als „Schalter“ für die Elektronenemission verwenden lässt. Diese Vorhersage wurde nun von der Forschungsgruppe von Prof. Peter Hommelhoff von der FAU Erlangen-Nürnberg experimentell bestätigt. Aufgrund dieser Ergebnisse konnte auch der detaillierte Prozessablauf erklärt werden.

Elektronen, die Lichtteilchen absorbieren

Schießt man Laserpulse auf die Metallspitze kann das elektrische Feld des Lasers Elektronen aus dem Metall reißen – das war bereits bekannt. Neu ist allerdings, dass es durch die Kombination von zwei verschiedenen Lasern eine Möglichkeit gibt, die Emission der Elektronen auf wenige Femtosekunden genau zu kontrollieren.

Es gibt verschiedene Möglichkeiten, wie ein Elektron ausreichend viel Energie bekommen kann, um die Nadelspitze zu verlassen: Beispielsweise kann das Elektron entweder zwei Lichtteilchen des Lasers mit höherer Energie absorbieren oder aber vier Lichtteilchen des niederenergetischen Laserpulses. Beides führt zum selben Ergebnis.

„So wie ein Teilchen im Doppelspaltexperiment, das sich auf zwei Pfaden gleichzeitig bewegt, kann ein Elektron auch hier zwei verschiedene Wege gleichzeitig beschreiten“, erklärt Prof. Joachim Burgdörfer (TU Wien). „Die Natur legt sich nicht fest, welchen Weg das Elektron nimmt – beide Möglichkeiten finden gleichzeitig statt und überlagern einander.“

Durch präzise Kontrolle der beiden Laser kann man nun einstellen, ob sich diese beiden Quanten-Möglichkeiten gegenseitig verstärken – dann kommt es zu einer erhöhten Emission von Elektronen – oder ob sie einander stattdessen auslöschen sollen, sodass praktisch überhaupt keine Elektronen ausgesandt werden. So kann man einfach und effektiv die Elektronen-Emission kontrollieren.

Das ist nicht nur eine ganz neue Methode, mit der man nun wichtige Experimente mit energiereichen Elektronen durchführen kann, die neue Technik soll in Zukunft auch eine sehr präzise Steuerung von Röntgenstrahlen ermöglichen: „Es wird bereits an innovativen Röntgen-Quellen gearbeitet, die Arrays aus feinen Nano-Spitzen als Elektronenquelle verwenden“, erklärt Lemell. „Mit unserer neuen Methode könnte man diese Nano-Spitzen genau richtig ansteuern, um kohärente Röntgenstrahlung zu erzeugen.“

Originalpublikation: Phys. Rev. Lett. 117, 217601 DOI: 10.1103/PhysRevLett.117.217601

Rückfragehinweis:

Prof. Joachim Burgdörfer
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13610
joachim.burgdoerfer@tuwien.ac.at

Dr. Florian Libisch
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13608
florian.libisch@tuwien.ac.at

Weitere Informationen:

https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2016/elektronenspitzen weitere Bilder
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.217601 Originalpublikation

Dr. Florian Aigner | Technische Universität Wien

Weitere Berichte zu: Elektron Elektronen Laser Laserpulse Lichtteilchen Metallspitze Röntgenstrahlung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Physiker entdecken neuen Transportmechanismus von Nanopartikeln durch Zellmembranen
14.12.2018 | Universität des Saarlandes

nachricht Tanz mit dem Feind
12.12.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: Quantenkryptographie ist bereit für das Netz

Wiener Quantenforscher der ÖAW realisierten in Zusammenarbeit mit dem AIT erstmals ein quantenphysikalisch verschlüsseltes Netzwerk zwischen vier aktiven Teilnehmern. Diesen wissenschaftlichen Durchbruch würdigt das Fachjournal „Nature“ nun mit einer Cover-Story.

Alice und Bob bekommen Gesellschaft: Bisher fand quantenkryptographisch verschlüsselte Kommunikation primär zwischen zwei aktiven Teilnehmern, zumeist Alice...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Tödliche Kombination: Medikamenten-Cocktail dreht Krebszellen den Saft ab

Zusammen mit einem Blutdrucksenker hemmt ein häufig verwendetes Diabetes-Medikament gezielt das Krebswachstum – dies haben Forschende am Biozentrum der Universität Basel vor zwei Jahren entdeckt. In einer Folgestudie, die kürzlich in «Cell Reports» veröffentlicht wurde, berichten die Wissenschaftler nun, dass dieser Medikamenten-Cocktail die Energieversorgung von Krebszellen kappt und sie dadurch abtötet.

Das oft verschriebene Diabetes-Medikament Metformin senkt nicht nur den Blutzuckerspiegel, sondern hat auch eine krebshemmende Wirkung. Jedoch ist die gängige...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung 2019 in Essen: LED Produktentwicklung – Leuchten mit aktuellem Wissen

14.12.2018 | Veranstaltungen

Pro und Contra in der urologischen Onkologie

14.12.2018 | Veranstaltungen

Konferenz zu Usability und künstlicher Intelligenz an der Universität Mannheim

13.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tagung 2019 in Essen: LED Produktentwicklung – Leuchten mit aktuellem Wissen

14.12.2018 | Veranstaltungsnachrichten

Rittal heizt ein in Sachen Umweltschutz - Rittal Lackieranlage sorgt für warme Verwaltungsbüros

14.12.2018 | Unternehmensmeldung

Krankheiten entstehen, wenn das Netzwerk von regulatorischen Autoantikörpern aus der Balance gerät

14.12.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics