Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Spitzen-Leistung der Elektronen

15.11.2016

Scharfe Metallspitzen verwendet man, um Elektronen gezielt in eine Richtung zu senden. Ein Quanten-Effekt liefert nun eine neue Methode, die Elektronen-Emission extrem genau zu kontrollieren.

Wenn man Elektronen präzise kontrollieren will, dann lässt man sie aus feinen Metallspitzen austreten – so macht man das etwa in einem Elektronenmikroskop. Seit Kurzem werden solche Metallspitzen auch als hochpräzise Elektronenquellen zur Erzeugung von Röntgenstrahlung verwendet.


Laserpulse werden auf eine Metallspitze geschossen und lösen Elektronen heraus.

FAU Erlangen-Nürnberg

Ein Team der TU Wien entwickelte nun gemeinsam mit einer Forschungsgruppe aus Deutschland (FAU Erlangen-Nürnberg) eine Methode, diese Elektronenemission mit Hilfe zweier Laserpulse viel genauer zu steuern als bisher. Damit wird es jetzt möglich, den Fluss der Elektronen auf extrem kurzen Zeitskalen ein- und auszuschalten.

Nur die Spitze zählt

„Die Grundidee ist ähnlich wie beim Blitzableiter“, erklärt Prof. Christoph Lemell vom Institut für Theoretische Physik der TU Wien. „Das elektrische Feld rund um eine Nadel ist immer genau an der Spitze am größten. Daher schlägt der Blitz in die Spitze des Blitzableiters ein, und aus demselben Grund verlassen Elektronen die Nadel genau an der Spitze.“

Mit modernen Methoden der Nanotechnologie kann man heute extrem feine Nadeln herstellen, ihre Spitze hat eine Ausdehnung von wenigen Nanometern. Man weiß also sehr genau, an welcher Stelle die Elektronen das Metall verlassen. Wichtig ist es zusätzlich nun aber auch, eine genaue Kontrolle darüber zu haben, ob und zu welchem Zeitpunkt die einzelnen Elektronen aus der Metallspitze austreten.

Genau das wird nun mit einer neuen Technik möglich: „Man beschießt die Metallspitze mit zwei verschiedenen Laserpulsen“, erklärt Florian Libisch (TU Wien). Die Farben dieser Laser wählt man so, dass die Lichtteilchen des einen Lasers genau doppelt so viel Energie haben wie die Lichtteilchen des anderen Lasers. Wichtig ist außerdem, dass die Lichtwellen der beiden Laser perfekt im gleichen Takt schwingen.

Das Team von der TU Wien konnte aufgrund von Computersimulationen vorhersagen, dass sich die zeitliche Verzögerung eines der beiden Pulse als „Schalter“ für die Elektronenemission verwenden lässt. Diese Vorhersage wurde nun von der Forschungsgruppe von Prof. Peter Hommelhoff von der FAU Erlangen-Nürnberg experimentell bestätigt. Aufgrund dieser Ergebnisse konnte auch der detaillierte Prozessablauf erklärt werden.

Elektronen, die Lichtteilchen absorbieren

Schießt man Laserpulse auf die Metallspitze kann das elektrische Feld des Lasers Elektronen aus dem Metall reißen – das war bereits bekannt. Neu ist allerdings, dass es durch die Kombination von zwei verschiedenen Lasern eine Möglichkeit gibt, die Emission der Elektronen auf wenige Femtosekunden genau zu kontrollieren.

Es gibt verschiedene Möglichkeiten, wie ein Elektron ausreichend viel Energie bekommen kann, um die Nadelspitze zu verlassen: Beispielsweise kann das Elektron entweder zwei Lichtteilchen des Lasers mit höherer Energie absorbieren oder aber vier Lichtteilchen des niederenergetischen Laserpulses. Beides führt zum selben Ergebnis.

„So wie ein Teilchen im Doppelspaltexperiment, das sich auf zwei Pfaden gleichzeitig bewegt, kann ein Elektron auch hier zwei verschiedene Wege gleichzeitig beschreiten“, erklärt Prof. Joachim Burgdörfer (TU Wien). „Die Natur legt sich nicht fest, welchen Weg das Elektron nimmt – beide Möglichkeiten finden gleichzeitig statt und überlagern einander.“

Durch präzise Kontrolle der beiden Laser kann man nun einstellen, ob sich diese beiden Quanten-Möglichkeiten gegenseitig verstärken – dann kommt es zu einer erhöhten Emission von Elektronen – oder ob sie einander stattdessen auslöschen sollen, sodass praktisch überhaupt keine Elektronen ausgesandt werden. So kann man einfach und effektiv die Elektronen-Emission kontrollieren.

Das ist nicht nur eine ganz neue Methode, mit der man nun wichtige Experimente mit energiereichen Elektronen durchführen kann, die neue Technik soll in Zukunft auch eine sehr präzise Steuerung von Röntgenstrahlen ermöglichen: „Es wird bereits an innovativen Röntgen-Quellen gearbeitet, die Arrays aus feinen Nano-Spitzen als Elektronenquelle verwenden“, erklärt Lemell. „Mit unserer neuen Methode könnte man diese Nano-Spitzen genau richtig ansteuern, um kohärente Röntgenstrahlung zu erzeugen.“

Originalpublikation: Phys. Rev. Lett. 117, 217601 DOI: 10.1103/PhysRevLett.117.217601

Rückfragehinweis:

Prof. Joachim Burgdörfer
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13610
joachim.burgdoerfer@tuwien.ac.at

Dr. Florian Libisch
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13608
florian.libisch@tuwien.ac.at

Weitere Informationen:

https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2016/elektronenspitzen weitere Bilder
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.217601 Originalpublikation

Dr. Florian Aigner | Technische Universität Wien

Weitere Berichte zu: Elektron Elektronen Laser Laserpulse Lichtteilchen Metallspitze Röntgenstrahlung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kosmische Katastrophe bestätigt Einsteins Relativitätstheorie
10.07.2020 | Max-Planck-Institut für Physik

nachricht Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen
09.07.2020 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics