Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die spinnen, die Elektronen!

15.02.2017

Grenzfläche zwischen Isolatoren ermöglicht Informationstransport per Spin.

Heutige Computertechnologie basiert auf dem Transport elektrischer Ladung in Halbleitern. Doch schon in naher Zukunft wird das Potential dieser Technologie ausgeschöpft sein, da die verwendeten Bauteile nicht weiter miniaturisiert werden können.


Diese Grenzschicht erlaubt den Transport von Information über den Dreh-impuls von Elektronen – Bild: Christoph Hohmann / NIM

Doch es gibt noch eine weitere Möglichkeit: Statt der Ladung der Elektronen könnte ihre Drehrichtung, ihr Spin, für den Informationstransport genutzt werden. Wie das geht, zeigt nun ein Wissenschaftlerteam aus München und Kyoto.

Computer und Mobilgeräte stellen Jahr für Jahr einen größeren Funktionsumfang bereit.
Basis für diese Leistungssteigerungen ist eine immer weitergehende Miniaturisierung.
Dieser ist jedoch eine fundamentale Grenze gesetzt, so dass eine beliebige weitere Steigerung mit konventioneller Halbleitertechnologie nicht zu erwarten ist.

Forschende in aller Welt arbeiten deshalb an Alternativen. Als besonders vielversprechend erweist sich die sogenannte Spin-Elektronik. Sie macht sich zunutze, dass Elektronen neben der Ladung auch einen Drehimpuls besitzen, den Spin. Diese Eigenschaft möchten die Fachleute nutzen, um die Informationsdichte und damit den Funktionsumfang zukünftiger Elektronik weiter zu erhöhen.

Wissenschaftler des Walther-Meißner-Institutes der Bayerischen Akademie der Wissenschaften (WMI) und der Technischen Universität München (TUM) in Garching konnten jetzt zusammen mit Kollegen von der Kyoto Universität in Japan den Transport von Spin-Information bei Raumtemperatur in einem außergewöhnlichen Materialsystem
nachweisen.

Eine besondere Grenzfläche

In ihren Experimenten wiesen sie die Erzeugung, den Transport und die Detektion von elektronischen Spins in der Grenzfläche zwischen den Materialien Lanthan-Aluminat (LaAlO2) und Strontium-Titanat (SrTiO3) nach. Die Besonderheit dieses Materialsystems: An der Grenzfläche zwischen den beiden nichtleitenden Materialien bildet sich eine extrem dünne, elektrisch leitfähige Schicht aus, ein sogenanntes zweidimensionales Elektronengas.

Das deutsch-japanische Team konnte nun zeigen, dass dieses zweidimensionale Elektronengas nicht nur Ladung, sondern auch Spin transportieren kann. „Dazu mussten wir zunächst einige technische Hürden überwinden“, sagt Dr. Hans Hübl, stellvertretender Direktor des Walther-Meißner-Instituts. „Die beiden wichtigsten Fragestellungen dabei lauteten: Wie lässt sich der Spin in das zweidimensionale Elektronengas übertragen und wie lässt sich sein Transport nachweisen?“

Informationstransport durch den Spin

Das Problem der Spin-Übertragung lösten die Wissenschaftler durch einen magnetischen Kontakt, dessen Elektronen durch Mikrowellenstrahlung zu einer Präzessionsbewegung gezwungen werden, analog zur Taumelbewegung eines Kreisels. Genau wie beim Kreisel hält diese Bewegung nicht ewig an, sondern schwächt sich ab – in diesem Fall durch Abgabe von Drehmoment an das zweidimensionale Elektronengas. Dieses ist nun in der Lage, die Spin-Information zu einem nichtmagnetischen Kontakt zu transportieren, der sich einen Mikrometer neben dem magnetischen Kontakt befindet.

Der nichtmagnetische Kontakt detektiert den Spin-Transport indem er die Spins absor-biert und dabei eine elektrische Spannung aufbaut. Durch Messung dieser Spannung konnten die Forscher den Spin-Transport systematisch untersuchen und nachweisen, dass er in derartigen Strukturen über Entfernungen bis zum hundertfachen Abstand heu-tiger Transistoren möglich ist.

Basierend auf diesen Ergebnissen will das Wissenschaftler-Team nun erforschen, inwie-weit sich mit diesem Materialsystem spinelektronische Bauelemente mit neuartigen Funktionalitäten realisieren lassen.

Das Forschungsprojekt wurde durch die Deutsche Forschungsgemeinschaft (DFG) im Rahmen des Exzellenzclusters „Nanosystems Initiative Munich“ (NIM) finanziell gefördert.

Publikation:
Strong evidence for d-electron spin transport at room temperature at a LaAlO3/SrTiO3 interface. R. Ohshima, Y. Ando, K. Matsuzaki, T. Susaki, M. Weiler, S. Klingler, H. Huebl, E. Shikoh, T. Shinjo, S.T.B Goennenwein and M. Shiraishi. Nature Materials, Advanced Online Publication 13. Februar 2017. DOI:10.1038/nmat4857

http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4857.html
Pressebild: Diese Grenzschicht erlaubt den Transport von Information über den Dreh-impuls von Elektronen – Bild: Christoph Hohmann / NIM

Kontakt:
Dr. Hans Gregor Hübl,
Gruppenleiter Magnetismus und Spintronics
Walther-Meißner-Institut der Bayerischen Akademie der Wissenschaften und
Lehrstuhl für Technische Physik (E23) der Technischen Universität München
Walther-Meißner-Straße 8, 85748 Garching, Germany
Tel.: +49 89 289 14204 – E-Mail: hans.huebl@tum.de –Web: http://www.wmi.badw.de

Weitere Informationen:

http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4857.html
http://www.wmi.badw.de

Dr. Isabel Leicht | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Grüne Spintronik: Mit Spannung Superferromagnetismus erzeugen
15.02.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Regensburger Physiker beobachten, wie es sich Elektronen gemütlich machen
14.02.2019 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Grüne Spintronik: Mit Spannung Superferromagnetismus erzeugen

Ein HZB-Team hat zusammen mit internationalen Partnern an der Lichtquelle BESSY II ein neues Phänomen in Eisen-Nanokörnern auf einem ferroelektrischen Substrat beobachtet: Die magnetischen Momente der Eisenkörner richten sich superferromagnetisch aus, sobald eine elektrische Spannung anliegt. Der Effekt funktioniert bei Raumtemperatur und könnte zu neuen Materialien für IT-Bauelemente und Datenspeicher führen, die weniger Energie verbrauchen.

In heutigen Datenspeichern müssen magnetische Domänen mit Hilfe eines externen Magnetfeld umgeschaltet werden, welches durch elektrischen Strom erzeugt wird....

Im Focus: Regensburger Physiker beobachten, wie es sich Elektronen gemütlich machen

Und können dadurch mit ihrer neu entwickelten Mikroskopiemethode Orbitale einzelner Moleküle in verschiedenen Ladungszuständen abbilden. Die internationale Forschergruppe der Universität Regensburg berichtet über ihre Ergebnisse unter dem Titel “Mapping orbital changes upon electron transfer with tunnelling microscopy on insulators” in der weltweit angesehenen Fachzeitschrift ,,Nature‘‘.

Sie sind die Grundbausteine der uns umgebenden Materie - Atome und Moleküle. Die Eigenschaften der Materie sind oftmals jedoch nicht durch diese Bausteine...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: Universität Konstanz gewinnt neue Erkenntnisse über die Entwicklung des Immunsystems

Wissenschaftler der Universität Konstanz identifizieren Wettstreit zwischen menschlichem Immunsystem und bakteriellen Krankheitserregern

Zellbiologen der Universität Konstanz publizieren in der Fachzeitschrift „Current Biology“ neue Erkenntnisse über die rasante evolutionäre Anpassung des...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zum Thema Desinformation in Online-Medien

15.02.2019 | Veranstaltungen

FfE-Energietage 2019 - Die Energiewelt heute und morgen vom 1. bis 4. April 2019 in München

15.02.2019 | Veranstaltungen

Deutscher Fachkongress für kommunales Energiemanagement: Fokus Energie – Architektur – BauKultur

13.02.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Katalysatoren - Fluktuationen machen den Weg frei

15.02.2019 | Biowissenschaften Chemie

Berührungsgeschützt, kompakt, einfach: Rittal erweitert Board-Technologie

15.02.2019 | Energie und Elektrotechnik

Wie kann digitales Lernen gelingen? Lern-Prototypen werden auf der didacta vorgestellt

15.02.2019 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics