Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Grenzen der Messgenauigkeit verschieben

02.07.2019

Forschende von Leibniz Universität und Physikalisch-Technischer Bundesanstalt entwickeln empfindlichere Quantensensoren

Seit Jahrhunderten erweitert die Menschheit ihr Verständnis der Welt durch immer genauere Messungen von Licht und Materie. Heute sind mit Quantensensoren extreme Messgenauigkeiten möglich. Ein Beispiel ist die Entwicklung von Atomuhren, die in 30 Milliarden Jahren lediglich eine Sekunde falsch gehen würden. Auch der Nachweis von Gravitationswellen erfolgte mit Quantensensoren, in diesem Fall mit optischen Interferometern.


© Fabian Wolf / PTB

Quantensensoren können Empfindlichkeiten erreichen, die nach den Gesetzen der klassischen Physik, wie wir sie aus unserem Alltag kennen, nicht möglich sind. Sie werden nur erreichbar, wenn man in die Welt der Quantenmechanik mit ihren faszinierenden Eigenschaften eintaucht.

Wie etwa dem Phänomen der Superposition wonach Dinge an zwei Orten gleichzeitig sein können oder ein Atom zu einem Zeitpunkt zwei unterschiedliche Energieniveaus einnehmen kann.

Sowohl die Erzeugung als auch die Kontrolle solcher nicht-klassischer Zustände ist extrem aufwändig. Die hohe Sensitivität für Messungen macht sie auch anfällig gegenüber äußeren Störungen. Zudem müssen nicht-klassische Zustände präzise auf eine bestimmte Messgröße optimiert werden.

„Leider geht das oft zu Lasten einer erhöhten Ungenauigkeit in einer anderen relevanten Messgröße“, erklärt Fabian Wolf die Herausforderung. Dieses Prinzip ist eng verknüpft mit der Heisenberg’schen Unschärferelation. Wolf ist Teil eines Teams aus Wissenschaftlerinnen und Wissenschaftlern der Leibniz Universität Hannover, der Physikalisch-Technischen Bundesanstalt in Braunschweig und des nationalen Instituts für Optik in Florenz, das nun eine Methode vorgestellt hat, die auf einem nicht-klassischen Zustand basiert, der für zwei Messgrößen gleichzeitig optimiert wurde.

Das Experiment kann als die quantenmechanische Version eines Fadenpendels veranschaulicht werden. Die beiden optimierten Messgrößen sind in diesem Fall die maximale Auslenkung (Amplitude) und die Anzahl der Schwingungen pro Sekunde (Frequenz) des Pendels. Das Pendel wurde dabei durch ein einzelnes Magnesium-Ion realisiert, das in einer sogenannten Ionenfalle eingeschlossen wurde.

Durch Wechselwirkung mit Laserlicht konnte das Magnesium-Ion bis in den quantenmechanischen Grundzustand, den kältesten erreichbaren Zustand, gekühlt werden. Von dort aus wurde ein sogenannter Fockzustand der Bewegung erzeugt und das Einzel-Atom-Pendel mit einer externen Kraft in Schwingung gebracht.

Amplitude und Frequenz konnten anschließend mit einer Empfindlichkeit gemessen werden, die mit einem klassischen Pendel unerreichbar wären. Im Gegensatz zu vorherigen Experimenten war dies für beide Messgrößen der Fall ohne dass der nicht-klassische Zustand angepasst werden musste.

Mit seinem neuen Ansatz konnte das Team die Messzeit bei gleicher Auflösung halbieren beziehungsweise bei gleicher Messzeit die Auflösung verdoppeln. Hohe Auflösungen sind besonders wichtig für Spektroskopietechniken die auf einer Änderung des Bewegungszustands beruhen. Im konkreten Fall wollen die Forscher einzelne Molekül-Ionen untersuchen, indem Sie diese mit einem Laser bestrahlen und darüber eine Bewegung des Moleküls anregen.

Das neue Verfahren soll eine Untersuchung des Zustands des Moleküls ermöglichen bevor dieser vom Laser durch zu lange Bestrahlung gestört wird. „Präzisionsmessungen an Molekülen könnten uns beispielsweise etwas über die Wechselwirkung von herkömmlicher und dunkler Materie verraten und damit einen wichtigen Beitrag zur Aufdeckung eines der größten Rätsel der aktuellen Physik leisten“, so Fabian Wolf.

Das erstmalig demonstrierte Messprinzip könnte auch in optischen Interferometern wie zum Beispiel Gravitationswellendetektoren die Auflösung verbessern und damit tiefere Einblicke in die Frühzeit des Universums ermöglichen.

Die Studie ist im Rahmen des von der Deutschen Forschungsgemeinschaft geförderten Sonderforschungsbereichs „DQ-mat – Designte Quantenzustände der Materie“ entstanden. Ihre Ergebnisse haben die Wissenschaftlerinnen und Wissenschaftler nun im Fachjournal Nature Communications veröffentlicht.

Hinweis an die Redaktion:
Für weitere Informationen steht Ihnen Prof. Piet Schmidt, Physikalisch-Technische Bundesanstalt und Institut für Quantenoptik, Leibniz Universität Hannover, unter Telefon +49 531 592-4700 oder per E-Mail unter piet.schmidt@quantummetrology.de gern zur Verfügung.

Originalpublikation:

Originalartikel:
Motional Fock states for quantum-enhanced amplitude and phase measurements with trapped ions
Fabian Wolf, Chunyan Shi, Jan C. Heip, Manuel Gessner, Luca Pezzè, Augusto Smerzi, Marius Schulte, Klemens Hammerer, and Piet O. Schmidt
Nature Communications 10
DOI: https://doi.org/10.1038/s41467-019-10576-4

Mechtild Freiin v. Münchhausen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
https://www.uni-hannover.de/de/universitaet/aktuelles/online-aktuell/details/news/die-grenzen-der-messgenauigkeit-verschieben/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ein Turbolader für den Superrechner JUWELS
14.11.2019 | Forschungszentrum Jülich

nachricht Lichtimpulse mit wenigen optischen Zyklen durchbrechen die 300 W-Barriere
14.11.2019 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bauplan eines bakteriellen Kraftwerks entschlüsselt

Wissenschaftler der Universität Würzburg und der Universität Freiburg gelang es die komplexe molekulare Struktur des bakteriellen Enzyms Cytochrom-bd-Oxidase zu entschlüsseln. Da Menschen diesen Typ der Oxidase nicht besitzen, könnte dieses Enzym ein interessantes Ziel für neuartige Antibiotika sein.

Sowohl Menschen als auch viele andere Lebewesen brauchen Sauerstoff zum Überleben. Bei der Umsetzung von Nährstoffen in Energie wird der Sauerstoff zu Wasser...

Im Focus: Neue Möglichkeiten des Additive Manufacturing erschlossen

Fraunhofer IFAM Dresden demonstriert Fertigung von Kupferbau

Am Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM in Dresden ist es gelungen, mittels Selektivem Elektronenstrahlschmelzen...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnetisches Tuning auf der Nanoskala

Magnetische Nanostrukturen maßgeschneidert herzustellen und nanomagnetische Materialeigenschaften gezielt zu beeinflussen, daran arbeiten Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gemeinsam mit Kollegen des Leibniz-Instituts für Festkörper- und Werkstoffforschung (IFW) Dresden und der Universität Glasgow. Zum Einsatz kommt ein spezielles Mikroskop am Ionenstrahlzentrum des HZDR, dessen hauchdünner Strahl aus schnellen geladenen Atomen (Ionen) periodisch angeordnete und stabile Nanomagnete in einem Probenmaterial erzeugen kann. Es dient aber auch dazu, die magnetischen Eigenschaften von Kohlenstoff-Nanoröhrchen zu optimieren.

„Materialien im Nanometerbereich magnetisch zu tunen birgt ein großes Potenzial für die Herstellung modernster elektronischer Bauteile. Für unsere magnetischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Hitzesommer, Überschwemmungen und Co. – Vor welchen Herausforderungen steht die Pflanzenzüchtung der Zukunft?

14.11.2019 | Veranstaltungen

Mediation – Konflikte konstruktiv lösen

12.11.2019 | Veranstaltungen

Hochleistungsmaterialien mit neuen Eigenschaften im Fokus von Partnern aus Wissenschaft und Wirtschaft

11.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bauplan eines bakteriellen Kraftwerks entschlüsselt

14.11.2019 | Biowissenschaften Chemie

Eisfreie Gletscherbecken als Wasserspeicher

14.11.2019 | Geowissenschaften

Lichtimpulse mit wenigen optischen Zyklen durchbrechen die 300 W-Barriere

14.11.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics