Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dauerbetrieb der Tokamaks rückt näher

27.04.2016

Aussichtsreiche Experimente in ASDEX Upgrade / Bedingungen für ITER und DEMO nahezu erfüllt

Die ihrer Natur nach in Pulsen arbeitenden Fusionsanlagen vom Typ Tokamak sind auf dem Weg zum Dauerbetrieb. Alexander Bock, Wissenschaftler im Max-Planck-Institut für Plasmaphysik in Garching, untersuchte, wie man den magnetischen Käfig für das Plasma anders als üblich – und für Dauerbetrieb tauglich – aufrechterhalten kann. Mit Erfolg: In speziell geführten Entladungen an der Fusionsanlage ASDEX Upgrade gelang es, den 800 Kiloampere starken elektrischen Strom im Plasma von außen zu treiben – unter Bedingungen, die auch für den Testreaktor ITER oder ein Demonstrationskraftwerk gelten.


Während des Aufbau von ASDEX Upgrade waren Plasmagefäß und Magnetspulen noch gut sichtbar.

Foto: IPP, 1989

Ziel der Fusionsforschung ist es, ein klima- und umweltfreundliches Kraftwerk zu entwickeln. Ähnlich wie die Sonne soll es aus der Verschmelzung von Atomkernen Energie gewinnen. Weil das Fusionsfeuer erst bei Temperaturen über 100 Millionen Grad zündet, darf der Brennstoff – ein dünnes Wasserstoffplasma – nicht in Kontakt mit kalten Gefäßwänden kommen. Von Magnetfeldern gehalten, schwebt er nahezu berührungsfrei im Inneren einer ringförmigen Vakuumkammer.

Für einen stabilen und dichten magnetischen Käfig müssen die Feldlinien innerhalb der kreisförmigen Kammer in großen, ineinanderliegenden Schrauben umlaufen. So spannen sie geschlossene, ineinander geschachtelte Flächen auf – wie die Jahresringflächen eines Baumstamms. Auf diesen magnetischen Flächen, auf denen die Plasmateilchen laufen, sind die mittlere Feldlinienverdrillung sowie Dichte und Temperatur des Plasmas jeweils konstant, während von Fläche zu Fläche – vom heißen Zentrum nach außen – die Verdrillung der Feldlinien sowie Dichte, Temperatur und Plasmadruck abnehmen.

Fusionsanlagen vom Typ Tokamak – wie ASDEX Upgrade in Garching oder der internationale Testreaktor ITER, der gerade im französischen Cadarache aufgebaut wird – benutzen zum Aufbau des Magnetkäfigs zwei sich überlagernde Magnetfelder: erstens ein ringförmiges Feld, das durch flache äußere Spulen erzeugt wird, und zweitens das Feld eines im Plasma fließenden Stroms. In dem kombinierten Feld laufen die Feldlinien dann schraubenförmig um und bauen die magnetischen Flächen auf.

Der Plasmastrom wird normalerweise pulsweise durch eine Transformatorspule im Plasma induziert. Daher arbeitet die gesamte Anlage nicht kontinuierlich, sondern in Pulsen – ein Manko der ansonsten so erfolgreichen Tokamaks, erklärt IPP-Wissenschaftler Alexander Bock: „Zum Beispiel könnte die ständig wechselnde Belastung die Lebensdauer des Kraftwerks verkürzen“.

Abgesehen davon macht der Strom das Plasma anfällig für eine Vielzahl von Instabilitäten, die den Einschluss des Plasmas stören können. Anders ist dies übrigens bei Anlagen vom Typ Stellarator, deren weltweit größte – Wendelstein 7-X – kürzlich im Greifswalder Teil des IPP in Betrieb ging. Weil sie das gesamte Feld allein durch komplex geformte Spulen, d.h. ohne Plasmastrom aufbauen, ist hier Dauerbetrieb möglich.

Deshalb werden schon lange Methoden untersucht, auch in einem Tokamak Dauerbetrieb zu erreichen, d.h. den Strom im Plasma nicht pulsweise per Transformator, sondern kontinuierlich – zum Beispiel durch Einstrahlen von Hochfrequenzwellen oder Einschießen von Teilchenstrahlen – zu erzeugen. In seiner Doktorarbeit untersuchte Alexander Bock, welche Effekte sich damit erreichen lassen.

Der große Vorteil: Mit einem zumindest teilweise von außen getriebenen Strom lässt sich das „übliche“ Profil des Stroms im Plasma beeinflussen und damit die Verdrillung der Feldlinien maßgeschneidert verändern. Senkt man zum Beispiel den Plasmastrom im Plasmazentrum, nimmt die Verdrillung der Feldlinien dort ab. Über komplexe Zusammenhänge der kollektiven Teilchenbewegungen verstärkt dies den sogenannten Bootstrap-Strom am Plasmarand.

Dieser elektrische Strom, den das Plasma bei Anwesenheit von Druckunterschieden von alleine aufbaut, kann einige zehn Prozent des Gesamtstroms ausmachen. Er lässt sich daher nutzen, um die Entladungen unabhängiger vom Transformator zu machen und längere Pulse zu erreichen – wenn es gelingt, einige Nebenbedingungen zu erfüllen, damit das sich quasi selbst einschließende Plasma im stabilen Gleichgewicht bleibt. „Im besten Fall“, so Alexander Bock, „könnte ein solcher ‚Advanced Tokamak’ stationär betrieben werden“. Zusätzlich sollte ein flacherer Verlauf der Verdrillung auch Turbulenzen im Plasma behindern und dadurch den Einschluss verbessern.

Dies ist dem ASDEX Upgrade-Team nun durch sorgfältige Steuerung der Entladungen tatsächlich gelungen – und zwar im Unterschied zu früheren Experimenten an der Garchinger Anlage, aber auch an DIII-D in den USA, dem europäischen JET oder dem japanischen JT-60U – erstmals an einer Maschine mit rein metallischer Innenwand. Denn seit 2007 ist die innere Wand des Plasmagefäßes von ASDEX Upgrade komplett mit Wolfram bedeckt, dem Metall mit dem höchsten Schmelzpunkt.

Unter diesen herausfordernden, aber reaktorrelevanten Bedingungen gelang jetzt der Betrieb nahezu ohne Transformator, und dies bei stabilem Plasma, hohem Plasmadruck und guten Einschlusseigenschaften in einem Wertebereich, in dem auch spätere Kraftwerke arbeiten sollen. Gezielt nahe dem Plasmazentrum eingestrahlte Mikrowellen und Teilchenstrahlen veränderten den Plasmapuls merklich: Für drei Sekunden blieb der 800 Kiloampere starke Plasmastrom auch ohne Transformator konstant.

Der Bootstrap-Strom machte dabei die Hälfte des Gesamtstroms aus. Wäre die Anlage nicht mit normalleitenden Kupferspulen, sondern, wie bei ITER vorgesehen, mit supraleitenden Magnetspulen ausgerüstet, hätte diese Phase ungleich länger ausgedehnt werden können –potentiell bis hin zum Dauerbetrieb. Alexander Bocks Fazit: „Die Entladungen zeigen, dass der attraktive Betrieb ohne Transformator in ASDEX Upgrade möglich ist. Es lohnt sich also, die Studien zum Advanced Tokamak fortzusetzen“.

Weitere Informationen:

http://www.ipp.mpg.de/de/aktuelles/presse/pi/2016/04_16

Isabella Milch | Max-Planck-Institut für Plasmaphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ferne Welten unter vielen Sonnen
14.11.2019 | Friedrich-Schiller-Universität Jena

nachricht TU Graz-Forschende entwickeln neuen 3D-Druck zur direkten Fertigung von Nanostrukturen
14.11.2019 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnetisches Tuning auf der Nanoskala

Magnetische Nanostrukturen maßgeschneidert herzustellen und nanomagnetische Materialeigenschaften gezielt zu beeinflussen, daran arbeiten Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gemeinsam mit Kollegen des Leibniz-Instituts für Festkörper- und Werkstoffforschung (IFW) Dresden und der Universität Glasgow. Zum Einsatz kommt ein spezielles Mikroskop am Ionenstrahlzentrum des HZDR, dessen hauchdünner Strahl aus schnellen geladenen Atomen (Ionen) periodisch angeordnete und stabile Nanomagnete in einem Probenmaterial erzeugen kann. Es dient aber auch dazu, die magnetischen Eigenschaften von Kohlenstoff-Nanoröhrchen zu optimieren.

„Materialien im Nanometerbereich magnetisch zu tunen birgt ein großes Potenzial für die Herstellung modernster elektronischer Bauteile. Für unsere magnetischen...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Mediation – Konflikte konstruktiv lösen

12.11.2019 | Veranstaltungen

Hochleistungsmaterialien mit neuen Eigenschaften im Fokus von Partnern aus Wissenschaft und Wirtschaft

11.11.2019 | Veranstaltungen

Weniger Lärm in Innenstädten durch neue Gebäudekonzepte

08.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Erkundungsmethode für die Geothermie

14.11.2019 | Geowissenschaften

Schmieden statt Schweißen: Stoffschlüssige Verbindung durch Umformen

14.11.2019 | Maschinenbau

Neuer Ansatz zur Parkinson-Therapie?

14.11.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics