Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Salz des Kometen

21.01.2020

Berner Forschende unter der Leitung der Astrophysikerin Kathrin Altwegg haben eine Erklärung gefunden, warum in der nebulösen Hülle von Kometen bislang wenig Stickstoff nachgewiesen werden konnte: der Lebensbaustein tritt zu einem grossen Teil in Form von Ammonium-Salzen auf, deren Vorkommen man bisher nicht messen konnte. Die Salze können ein weiterer Hinweis darauf sein, dass Kometeneinschläge Leben auf der Erde überhaupt erst möglich gemacht haben.

Vor mehr als 30 Jahren flog die Europäische Kometenmission Giotto am Kometen Halley vorbei. An Bord war das Berner Ionenmassenspektrometer IMS, das von Prof. em. Hans Balsiger geleitet wurde. Eine wichtige Erkenntnis der Messungen dieses Instruments war, dass in der der Koma von Halley – der nebulösen Hülle des Kometen, die sich bildet, wenn ein Komet nahe an der Sonne vorbeizieht – scheinbar Stickstoff fehlt.


Gas und Staub steigen von «Churys» Oberfläche auf, während sich der Komet dem sonnennächsten Punkt auf seiner Umlaufbahn nähert.

ESA/Rosetta/NAVCAM


Prof. em. Dr. Kathrin Altwegg Physikalisches Institut, Weltraumforschung und Planetologie (WP), Universität Bern

Universität Bern, Bild: Manu Friederich

Stickstoff (N) wurde zwar in Form von Ammoniak (NH3) und Blausäure (HCN) entdeckt, aber die Häufigkeit war weit von der erwarteten kosmischen Häufigkeit entfernt. Mehr als 30 Jahre später und dank eines glücklichen Zufalls sind die Forschenden der Lösung dieses Rätsels auf die Spur gekommen.

Dies dank der Auswertung von Daten des Berner Massenspektrometers ROSINA, welches an Bord der ESA-Raumsonde Rosetta Daten des Kometen 67P/Churyumov-Gerasimenko, kurz Chury genannt, gesammelt hatte (siehe Infobox unten).

Riskanter Flug durch die Staubwolke des Kometen Chury

Weniger als einen Monat vor Ende der Rosetta-Mission befand sich die Raumsonde nur 1.9 km über der Oberfläche von Chury, als sie durch eine Staubwolke des Kometen flog. Dies führte zu einem direkten Einschlag von Staub in die Ionenquelle des von der Universität Bern geleiteten Massenspektrometers ROSINA-DFMS (Rosetta Orbiter Sensor for Ion and Neutral Analysis-Doppel-Fokussierendes Massenspektrometer).

Kathrin Altwegg, die leitende Forscherin von ROSINA und Ko-Autorin der neuen Studie, die heute im renommierten Journal Nature Astronomy publiziert wurde, sagt: «Dieser Staub hat beinahe unser Instrument zerstört und Rosettas Lageregelung verwirrt.»

Dank dem Flug durch die Staubwolke konnten Substanzen festgestellt werden, die normalerweise in der kalten Umgebung des Kometen auf den Staubkörnern verbleiben und deswegen nicht gemessen werden können. Die Menge von zum Teil vorher nie bei einem Kometen gemessenen Molekülen war erstaunlich.

Insbesondere war die Häufigkeit von Ammoniak, der chemischen Verbindung von Stickstoff und Wasserstoff mit der Formel NH3, plötzlich um ein Vielfaches grösser. «Wir kamen auf die Idee, dass die Häufigkeit von Ammoniak in den ROSINA-Daten möglicherweise auf das Vorkommen von Ammonium-Salzen zurückzuführen sein könnte», erklärt Altwegg.

«Als Salz hat Ammoniak eine viel höhere Verdampfungstemperatur als das Eis und ist deshalb in der kalten Umgebung des Kometen meist in der festen Form vorhanden, die man bis jetzt weder durch Fernerkundung mit Teleskopen noch vor Ort messen konnte.»

Ammoniumsalz und seine Rolle in der Entstehung von Leben

Ausgedehnte Laborarbeiten waren nötig, um die Präsenz dieser Salze im kometären Eis nachzuweisen. «Das ROSINA-Team hat Spuren von fünf verschiedenen Ammonium-Salzen gefunden: Ammoniumchlorid, Ammoniumcyanid, Ammoniumcyanat, Ammoniumformat und Ammoniumacetat», sagt die Chemikerin im ROSINA-Team und Mitautorin der aktuellen Studie, Dr. Nora Hänni.

«Bislang war das scheinbare Fehlen von Stickstoff bei Kometen ein Rätsel. Unsere Studie zeigt nun, dass sehr wohl Stickstoff bei Kometen vorhanden ist, nämlich in der Form von Ammonium-Salzen», so Hänni weiter.

Unter den entdeckten Ammoniumsalzen sind einige astrobiologisch relevante Moleküle, die zum Aufbau von Harnstoff, Aminosäuren, Adenin und Nukleotiden führen können. Kathrin Altwegg sagt: «Dies ist durchaus ein weiterer Hinweis, dass Kometeneinschläge mit der Entstehung von Leben auf der Erde verknüpft sein könnten.»

Wissenschaftliche Ansprechpartner:

Prof. em. Dr. Kathrin Altwegg
Physikalisches Institut, Weltraumforschung und Planetologie (WP), Universität Bern
Telefon: +41 31 631 44 20
Email: kathrin.altwegg@space.unibe.ch

Originalpublikation:

K. Altwegg, H. Balsiger, J.-J. Berthelier, C. Briois, M. Combi, H. Cottin, J. De Keyser, F. Dhooghe, B. Fiethe, S. A. Fuselier, T. I. Gombosi, N. Hänni, M. Rubin, M. Schuhmann, I. Schroeder, T. Sémon, S. Wampfler: Evidence of ammonium salts in comet 67P as explanation for the nitrogen depletion in cometary comae. Nature Astronomy, 20.01.2020.
https://doi.org/10.1038/s41550-019-0991-9
https://www.nature.com/articles/s41550-019-0991-9

Weitere Informationen:

https://tinyurl.com/Ammoniumsalze

Nathalie Matter | Universität Bern
Weitere Informationen:
http://www.unibe.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantencomputern das Lernen beibringen
24.02.2020 | Leibniz Universität Hannover

nachricht Die Loopings der Bakterien: Forschungsteam mit Beteiligung der Universität Göttingen analysiert Fortbewegung
24.02.2020 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Loopings der Bakterien: Forschungsteam mit Beteiligung der Universität Göttingen analysiert Fortbewegung

Das magnetotaktische Bakterium Magnetococcus marinus schwimmt mit Hilfe von zwei Bündeln von Geißeln. Außerdem besitzen die Bakterienzellen eine Art intrazelluläre Kompassnadel und können daher mit einem Magnetfeld gesteuert werden. Sie werden deshalb als biologisches Modell für Mikroroboter benutzt. Ein internationales Team der Universität Göttingen, des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam und der CEA Cadarache (Frankreich) hat nun aufgeklärt, wie sich diese Bakterien bewegen und deren Schwimmgeschwindigkeit bestimmt. Die Ergebnisse sind in der Fachzeitschrift eLife erschienen.

Die Forscherinnen und Forscher nutzten eine Kombination von neuen experimentellen Methoden und Computersimulationen: Sie verfolgten die Bewegung der...

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schiffsexpedition bringt Licht ins Innere der Erde

24.02.2020 | Geowissenschaften

Elektronenbeugung zeigt winzige Kristalle in neuem Licht

24.02.2020 | Biowissenschaften Chemie

Antikörper als Therapiealternative bei Tumoren am Hör- und Gleichgewichtsnerv?

24.02.2020 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics