Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Proton präzise gewogen

19.07.2017

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in Heidelberg (MPIK) nicht nur just for fun oder um einen neuen Rekord aufzustellen. Das Proton ist der Kern des Wasserstoffatoms und Baustein in allen anderen Atomkernen.


Penningfallen-Apparatur zur Bestimmung der Masse des Protons. An die zylindrischen Elektroden (gelb) angelegte unterschiedliche elektrische Spannungen generieren das Speicherpotential (rote Linie).

MPI für Kernphysik

Die Protonenmasse ist daher eine wichtige Größe in der Atomphysik: Sie beeinflusst unter anderem, wie sich die Elektronen um den Atomkern bewegen. Der Einfluss zeigt sich in den Spektren, also welche Lichtfarben (Wellenlängen) Atome absorbieren und wieder abstrahlen können. Indem man diese Wellenlängen mit theoretischen Vorhersagen vergleicht, kann man fundamentale physikalische Theorien prüfen.

Des Weiteren soll ein präziser Vergleich der Massen des Protons und des Antiprotons bei der Suche nach dem entscheidenden Unterschied – außer dem umgekehrten Vorzeichen der Ladung – zwischen Materie und Antimaterie helfen. Dieser Unterschied ist winzig, aber es muss ihn geben, denn das Universum besteht praktisch vollständig aus Materie, obwohl im Urknall Materie und Antimaterie in gleichen Mengen entstanden sein müssen.

Als geeignete „Waagen“ für Ionen haben sich Penningfallen bewährt. In solch einer Falle kann man einzelne geladene Teilchen, wie z.B. ein Proton, mit Hilfe von elektrischen und magnetischen Feldern nahezu ewig einsperren. Das gefangene Teilchen führt in der Falle eine charakteristische Bewegung aus, die durch drei Frequenzen beschrieben wird – und diese lassen sich messen und daraus die Masse des Teilchens berechnen. Um dabei die angestrebte hohe Präzision zu erreichen, war eine ausgefeilte Messtechnik erforderlich.

Der Massenstandard für Atome ist das Kohlenstoffisotop 12C, das per Definition 12 atomare Masseneinheiten schwer ist. „Wir haben es als direkten Vergleich herangezogen“, berichtet Sven Sturm. „Zunächst haben wir je ein Proton und ein Kohlenstoffion (12C6+) in getrennten Abteilen unserer Penningfallen-Apparatur gespeichert, dann abwechselnd je eines der beiden Ionen in das in der Mitte liegende Messabteil geschleust und ihre Bewegung darin vermessen.“

Das Verhältnis der beiden Messwerte ergibt die Masse des Protons direkt in atomaren Einheiten. Das Messabteil ist mit einer eigens dafür entwickelten speziellen Elektronik ausgestattet. Andreas Mooser vom RIKEN in Japan erklärt deren Zweck: „Sie ermöglichte es uns, das Proton trotz seiner etwa 12-mal geringeren Masse und 6-mal kleineren Ladung unter identischen Bedingungen zu messen wie das Kohlenstoffion.“

Das Resultat für die Masse des Protons von 1,007276466583(15)(29) atomaren Masseneinheiten ist dreimal genauer als der derzeit empfohlene Wert, wobei die Zahlen in Klammern die statistische und systematische Unsicherheit angeben.

Jedoch ist der neue Wert signifikant kleiner als der aktuelle Standardwert. Messungen anderer Autoren wiesen bei der Masse des Tritiumatoms, des schwersten Wasserstoffisotops (T = 3H), und der Masse von leichtem Helium (3He) im Vergleich zum „halbschweren“ Wasserstoffmolekül HD (D = 2H, Deuterium, schwerer Wasserstoff) Unstimmigkeiten auf. „Unser Ergebnis trägt dazu bei, dieses Rätsel zu lösen, weil es die Protonenmasse in die richtige Richtung korrigiert“, zeigt sich Klaus Blaum erfreut.

Florian Köhler-Langes vom MPIK erklärt, wie die Forscher die Genauigkeit ihrer Messung noch weiter steigern wollen: „In Zukunft werden wir ein drittes Ion in unserem Fallenturm speichern. Indem wir die Bewegung dieses Referenzions gleichzeitig messen, können wir den Unsicherheitsfaktor eliminieren, der von Schwankungen des Magnetfelds herrührt.“


Originalpublikation:
High-precision measurement of the proton’s atomic mass
F. Heiße, F. Köhler-Langes, S. Rau, J. Hou, S. Junck, A. Kracke, A. Mooser, W. Quint, S. Ulmer, G. Werth, K. Blaum, and S. Sturm, Physical Review Letters 119, 033001 (18.07.2017 online) https://doi.org/10.1103/PhysRevLett.119.033001

Kontakt:

Prof. Dr. Klaus Blaum, MPI für Kernphysik
E-Mail: klaus.blaum(at)mpi-hd.mpg.de
Tel.: +49 6221 516850

Dr. Sven Sturm, MPI für Kernphysik
E-Mail: sven.sturm(at)mpi-hd.mpg.de
Tel.: +49 6221 516447

Dr. Andreas Mooser, RIKEN
E-Mail: andreas.mooser(at)cern.ch

Weitere Informationen:

https://physics.aps.org/synopsis-for/10.1103/PhysRevLett.119.033001 - Physics Synopsis: Proton Loses Weight
https://www.mpi-hd.mpg.de/blaum/index.de.html - Abteilung Blaum am MPIK
http://ulmerfsl.riken.jp/index.html - Ulmer Fundamental Symmetries Laboratory am RIKEN

Dr. Gertrud Hönes | Max-Planck-Institut für Kernphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik
20.07.2018 | Technische Universität Berlin

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics