Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Tod startet die Stoppuhr - Radiocarbonmessung in NRW

16.11.2001


Seit kurzem steht auch im Dynamitron-Tandem-Labor der RUB eine Anlage für Radiocarbonmessungen. Die Deutsche Forschungsgemeinschaft und das Istituto Nazionale di Fisica Nucleare, Projekt-Partner der Bochumer Physiker in Neapel, stellten für die Anlage insgesamt 2 Mio. DM zur Verfügung. Diese Anlage ist die erste in NRW und nach Kiel und Erlangen die dritte in Deutschland.

Eine der besten Anlagen der Welt steht an der RUB

Wann lebte und starb Ötzi? Wie alt sind gefundene Tierknochen? Bei der Beantwortung solcher Fragen kann die Radiocarbonmethode helfen. Durch sie lässt sich der Tod von Lebewesen genau datieren. Seit kurzem steht auch im Dynamitron-Tandem-Labor der RUB eine Anlage für Radiocarbonmessungen. Die Deutsche Forschungsgemeinschaft und das Istituto Nazionale di Fisica Nucleare, Projekt-Partner der Bochumer Physiker in Neapel, stellten für die Anlage insgesamt 2 Mio. DM zur Verfügung. Diese Anlage ist die erste in NRW und nach Kiel und Erlangen die dritte in Deutschland. Testmessungen mit der neuen Anlage Anfang November haben ergeben, dass sie 100 mal besser ist als die Anlage in Neapel. Damit gehört die Bochumer Anlage zu den besten der Welt.

Schwer, schwerer, am schwersten

Kohlenstoff (chemisches Symbol: C) ist als Grundlage aller organischen Moleküle zentraler Bestandteil des Lebens. Wie jedes chemische Element besitzen auch C-Atome verschieden schwere Atomkerne. Es kommen drei natürliche Gewichtsvarianten vor; die schwerste von ihnen wird als 14C bezeichnet und ist radioaktiv. Diese Gewichtsunterschiede haben keinen Einfluss darauf, wie ein Kohlenstoffatom mit anderen Stoffen reagiert. Pflanzen bauen deshalb alle drei möglichen Gewichtszustände als CO2 (Kohlendioxid) bei der Photosynthese in ihre Zuckermoleküle ein. Über die Nahrungskette gelangt auch 14C in alle Lebewesen, die den Kohlenstoff als Knochen oder Muskel in ihre Körper einbauen. Sobald ein Lebewesen stirbt, nimmt es keinen Kohlenstoff mehr auf. Jetzt beginnt eine Stoppuhr der besonderen Art zu laufen.

Die Stoppuhr läuft...

Da 14C radioaktiv ist, zerfällt das Atom mit der Zeit. Egal, wie viele 14C -Atome zu Beginn vorliegen, nach jeweils 5760 Jahren existiert nur noch die Hälfte; der Rest zerfällt in Stickstoff. Dies macht sich die Radiocarbonmethode zu Nutze: Zeit seines Lebens baut ein Lebewesen auf 1 200 000 000 000 (= 1,2 x 1012) leichtere C-Atome ein einziges schweres 14C -Atom ein. So lange es lebt, nimmt es genauso viele 14C -Atome auf, wie in seinem Körper zerfallen. Nach dem Tod nimmt nur die Anzahl der schweren 14C -Atome durch Zerfall ab. Wenn man feststellt, wie viele radioaktive 14C -Atome noch vorliegen, lässt sich zurückrechnen, wann die Aufnahme von 14C stoppte und damit auch, wann das Lebewesen starb. So können Forscher das Alter jeglicher organischer Materialien bestimmen, darunter Knochenfunde oder - über die Pflanzen, aus denen sie gemacht sind - auch Bücher, Gemälde und Musikinstrumente.

Fliegende Teilchen

Die Mengenverhältnisse der einzelnen Gewichtstypen sowie die geringe Größe der Teilchen fordert die Messgeräte heraus. Erst nach mehreren Arbeitsschritten weiß man, wie alt Ötzi ist: Die Probe, z.B. pflanzlicher Mageninhalt, wird gereinigt, getrocknet und dann in Graphit umgewandelt, die beste Kohlenstoffform für die anschließenden Schritte. Um die verschieden schweren C-Atome voneinander trennen zu können, müssen sie in elektrisch geladene Teilchen (Ionen) umgewandelt werden. Dabei bewegen sie sich gemeinsam mit der gleichen, hohen Energie (also sehr schnell) in eine Richtung. Passieren sie ein Magnetfeld, schlagen die schwereren Ionen eine andere Flugbahn ein als die leichteren. Dies ermöglicht einer Filteranlage, die verschiedenen Teilchen voneinander zu trennen.

Extrem leistungsfähig

Anfang November ergaben Testmessungen, dass der Bochumer Filter ERNA (European Recoil seperator for Nuclear Astrophysics) in der Lage ist, eines der schweren Teilchen aus 1014 bis 1015 (Einhunderttausend Milliarden bis 1 Million Milliarden) leichteren herauszufiltern. Eine Anlage zur Präparation der Proben soll demnächst das System vervollständigen. Außerdem gibt es Ideen, wie das Messverfahren kürzer werden kann und so mehr Messungen möglich werden. Das Dynamitron-Tandem-Labor wird somit in Zukunft einen wichtigen Beitrag zur interdisziplinären Forschung auf den Gebieten der Paläonthologie, Archäologie, Geschichtswissenschaft, Kunst und Umwelt leisten.

Weitere Informationen

Frank Schümann, Ruhr-Universität Bochum, Fakultät für Physik und Astronomie, Institut für Experimentalphysik III, NB 3, Tel.: 0234/32-23597, E-Mail: schuemann@EP3.ruhr-uni-bochum.de

Dr. Josef König | idw

Weitere Berichte zu: Lebewesen NRW Radiocarbonmessung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hannoveraner Physikerteam sagt neue Moleküle aus Licht voraus
26.02.2020 | Leibniz Universität Hannover

nachricht Wie groß das Neutron ist
26.02.2020 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computersimulationen stellen bildlich dar, wie DNA erkannt wird, um Zellen in Stammzellen umzuwandeln

Forscher des Hubrecht-Instituts (KNAW - Niederlande) und des Max-Planck-Instituts in Münster haben entdeckt, wie ein essentielles Protein bei der Umwandlung von normalen adulten humanen Zellen in Stammzellen zur Aktivierung der genomischen DNA beiträgt. Ihre Ergebnisse werden im „Biophysical Journal“ veröffentlicht.

Die Identität einer Zelle wird dadurch bestimmt, ob die DNA zu einem beliebigen Zeitpunkt „gelesen“ oder „nicht gelesen“ wird. Die Signalisierung in der Zelle,...

Im Focus: Bayreuther Hochdruck-Forscher entdecken vielversprechendes Material für Informationstechnologien

Forscher der Universität Bayreuth haben ein ungewöhnliches Material entdeckt: Bei einer Abkühlung auf zwei Grad Celsius ändern sich seine Kristallstruktur und seine elektronischen Eigenschaften abrupt und signifikant. In diesem neuen Zustand lassen sich die Abstände zwischen Eisenatomen mithilfe von Lichtstrahlen gezielt verändern. Daraus ergeben sich hochinteressante Anwendungsmöglichkeiten im Bereich der Informationstechnologien. In der Zeitschrift „Angewandte Chemie – International Edition“ stellen die Wissenschaftler ihre Entdeckung vor. Die neuen Erkenntnisse sind aus einer engen Zusammenarbeit mit Partnereinrichtungen in Augsburg, Dresden, Hamburg und Moskau hervorgegangen.

Bei dem ungewöhnlichen Material handelt es sich um ein Eisenoxid mit der Zusammensetzung Fe₅O₆. In einem Hochdrucklabor des Bayerischen Geoinstituts (BGI),...

Im Focus: Von China an den Südpol: Mit vereinten Kräften dem Rätsel der Neutrinomassen auf der Spur

Studie von Mainzer Physikern zeigt: Experimente der nächsten Generation versprechen Antworten auf eine der aktuellsten Fragen der Neutrinophysik

Eine der spannendsten Herausforderungen der modernen Physik ist die Ordnung oder Hierarchie der Neutrinomassen. Eine aktuelle Studie, an der Physiker des...

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

CLIMATE2020 – Weltweite Online-Klimakonferenz vom 23. bis 30. März 2020

26.02.2020 | Veranstaltungen

Automatisierung im Dienst des Menschen

25.02.2020 | Veranstaltungen

Genomforschung für den Artenschutz - Internationale Fachtagung in Frankfurt

25.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

IGF macht's möglich: Lemgoer Forschungsteam entwickelt neues Verfahren zur Abwehr von Noroviren auf Obst und Gemüse

26.02.2020 | Biowissenschaften Chemie

CLIMATE2020 – Weltweite Online-Klimakonferenz vom 23. bis 30. März 2020

26.02.2020 | Veranstaltungsnachrichten

Neue Wege im Kampf gegen die Parkinson-Krankheit: HZDR-Forscher entwickeln Radiotracer für die Differentialdiagnostik

26.02.2020 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics