Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Femto-Lasertechnik auf neuen Wegen

08.11.2001


Max-Planck-Forscher messen erstmals Effekte einzelner optischer Zyklen


Wenn ein Laserpuls so kurz wird, dass er nur wenige Femtosekunden lang aufblitzt, dann treten die einzelnen optischen Zyklen zu Tage, die sonst hinter der flachen Pulsform verborgen bleiben. Effekte dieser einzelnen optischen Zyklen haben Wissenschaftler des Garchinger Max-Planck-Instituts für Quantenoptik um Gerhard G. Paulus gemeinsam mit Mailänder Kollegen erstmals sichtbar gemacht (Nature, 8. November 2001). Den Forschern ist es gelungen, die Auswirkungen der so genannten absoluten Phase zu beobachten und ihren Effekt nachzuweisen. Dies hat weitreichende Bedeutung für viele Anwendungen der Femtosekunden-Lasertechnik.

Die schnellsten atomaren und molekularen Prozesse in Zeitlupe beobachten und dabei sehen, was Moleküle und Atome tatsächlich tun - mit Hilfe der Femtosekunden-Lasertechnik ist dies möglich geworden. Je kürzer die Laserpulse, desto schnellere Vorgänge können scharf abgebildet werden. Und nicht nur das: Auch eine größere (Frequenz-)Bandbreite steht zur Verfügung. Bei etwa fünf Femtosekunden liegt derzeit der Rekord, das sind nur wenige Billiardstel Sekunden, die das Licht aufblitzt. In diesem Bereich gewinnt ein Parameter an Bedeutung, den Wissenschaftler die "absolute Phase" eines Pulses nennen. Der Parameter beschreibt, wie sich die Phase der Trägerwelle zum Maximum der Einhüllenden des Pulses verhält (Abb. 1).


Abb. 1: Der Zeitverlauf des elektrischen Felds eines Laserpulses, der aus nur sehr wenigen optischen Zyklen besteht, hängt von der Phase der Trägerwelle bezüglich des Maximums der Pulseinhüllenden ab (hellblau). Die absolute Phase beträgt bei den Bildern 0, 1/2 und 1. Das absolute Maximum des Felds ist beim ersten beziehungsweise dritten Bild in positiver beziehungsweise negativer Richtung, während es beim mittleren Bild in beide Richtungen gleich groß ist.
Diagramm: Max-Planck-Institut für Quantenoptik


Wissenschaftlern des Max-Planck-Instituts für Quantenoptik in Garching ist es jetzt in Kooperation mit Kollegen der Polytechnischen Universität in Mailand erstmals gelungen, die Auswirkungen der absoluten Phase zu beobachten und ihren Effekt nachzuweisen. In der aktuellen Ausgabe der Fachzeitschrift Nature stellen sie das Experiment vor. Die Forscher haben dazu die Photoionisation mit ultrakurzen Laserpulsen untersucht. Die Vorgänge dabei kann man sich anschaulich etwa so vorstellen: Durch das oszillierende Feld des Lasers werden die Elektronen im Atom in Schwingungen versetzt, bis eines so viel Energie gewinnt, dass es den atomaren Verband verlässt. Bei langen Laserpulsen werden die Elektronen so oft hin und her geschüttelt, dass es gleichgültig ist, ob sie zuerst nach links und dann nach rechts ausgelenkt werden oder umgekehrt. Bei kurzen Zwei-Zyklen-Pulsen spielt es dagegen eine erhebliche Rolle, ob der erste Stoß von rechts oder von links kommt (Abb. 2).


Abb. 2: Eine fast perfekte Analogie zur Photoionisation mit langen und kurzen Pulsen kann man bei Asterix und Obelix finden. Für den Römer, den Obelix etwas ungeduldig nach seinem Helm fragt, ist es völlig belanglos, ob die erste Ohrfeige nun von rechts oder von links kam. Die Situation entspricht einem Laserpuls mit vielen optischen Zyklen. Dagegen bewegt sich der Helm des Kontrahenten von Asterix offensichtlich auf verschiedenen Flugbahnen, abhängig von der "absoluten Phase" des Kinnhakens.
Comic: ©2001, Editions Albert René / Goscinny-Uderzo


In ihrem Experiment haben die Garchinger Forscher mit Wellenlängen am oberen Rand des sichtbaren Spektrums (etwa 800 Nanometer) gearbeitet. Bei einer Pulsdauer von fünf Femtosekunden bedeutet dies, dass die Lichtwelle weniger als zwei volle Schwingungszyklen durchläuft. Die absolute Phase ändert sich dabei von Laserpuls zu Laserpuls in zufälliger Weise. Deshalb haben die Wissenschaftler das Stereo-Photoionisationsexperiment gewählt. Dabei werden zwei Elektronendetektoren verwendet, die sich gegenüber stehen (Abb. 3). Für jeden Laserpuls wird damit die Anzahl der nach links und rechts emittierten Photoelektronen gleichzeitig registriert. Wenn nun beispielsweise die absolute Phase eines Laserpulses so liegt, dass das Maximum der Feldstärke (genauer des entsprechenden "Vektorpotenzials") nach rechts zeigt, so werden viele Elektronen am rechten Elektronendetektor und wenige am linken gezählt - und umgekehrt. Das heißt: Bei jedem Laserschuss ist die Anzahl der nach links und rechts wegfliegenden Elektronen antikorreliert. Ein Laserpuls, der viele Elektronen nach links emittiert, sendet wenige nach rechts aus und umgekehrt. Der sehr empfindliche Nachweis dieser Antikorrelation war schließlich die entscheidende Spur, mit der erstmals der Effekt der absoluten Phase belegt werden konnte (Abb. 4).


Abb. 3: Laserpulse mit einer Dauer von etwa fünf Femtosekunden (pink) werden auf Kryptonatome (hellblau) fokussiert. Die Anzahl der nach links und rechts emittierten Photoelektronen hängt von der absoluten Phase des jeweiligen Pulses ab. Sie werden Schuss für Schuss durch zwei Elektronendetektoren (grau) registriert. Zusätzlich kann auch ihre Flugzeit und damit ihre kinetische Energie gemessen werden.
Zeichnung: Max-Planck-Institut für Quantenoptik


Die Wissenschaftler gehen davon aus, dass dieser Nachweis Bedeutung hat für viele Anwendungen der ultrakurzen Laserpuls-Technik. Sei es die Steuerung von kohärenten chemischen Reaktionen oder die Erzeugung von noch kürzeren Pulsen (Attosekunden) und damit zusammenhängend die Erzeugung von laserartigem Licht im Röntgenbereich. Dies alles erfordert, dass die absolute Phase konstant gehalten werden kann. Auch für die Präzisionsmessung optischer Frequenzen und ihren Anwendungen in der Telekommunikation ist es wünschenswert, dass die absolute Phase für alle Pulse, die von einem Laser erzeugt werden, konstant ist. Erst dann ist nämlich eine optimale Zeitmessung möglich. Letztlich sind sämtliche Phänomene, die durch Laserpulse hervorgerufen werden, abhängig vom zeitlichen Verlauf des elektromagnetischen Felds und damit - sehr kurze Pulse vorausgesetzt - auch von der absoluten Phase. Deshalb ist die Stabilisierung der absoluten Phase für intensive Laserpulse die nächste große Herausforderung für die Laserphysiker. Dies setzt jedoch voraus, dass man Messmethoden für die absolute Phase besitzt. Die Arbeit der Garchinger und Mailänder Wissenschaftler zeigt eine Möglichkeit dazu auf.


Abb. 4:Die Signatur der absoluten Phase ist eine Antikorrelation in der Anzahl der nach links und rechts emittierten Photoelektronen. Grafisch kann man sie dadurch darstellen, dass man jeden Laserschuss entsprechend der von ihm erzeugten Anzahl an Photoelektronen in eine Korrelationstafel einträgt. Häufig auftretende Zahlenpaare sind hier in roten, seltenere in blauen Farbtönen verzeichnet. Die Antikorrelation zeigt sich in der vergleichsweise hohen Zahl von Laserschüssen, die zu stark asymmetrischen Elektronenzahlen im rechten und linken Detektor führen, also zu großem Ausschlag nach links bei kleinem Ausschlag nach rechts und umgekehrt. Dies entspricht Punkten, die nahe an der horizontalen oder vertikalen Achse liegen.

Dr. Gerhard G. Paulus | Presseinformation
Weitere Informationen:
http://www.mpg.de/index.html

Weitere Berichte zu: ABB Elektron Femtosekunde Laserpuls Max-Planck-Institut Photoelektron Zyklus

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Tanz mit dem Feind
12.12.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Bose-Einstein-Kondensate können Gravitationswellen derzeit wohl kaum nachweisen
12.12.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkryptographie ist bereit für das Netz

Wiener Quantenforscher der ÖAW realisierten in Zusammenarbeit mit dem AIT erstmals ein quantenphysikalisch verschlüsseltes Netzwerk zwischen vier aktiven Teilnehmern. Diesen wissenschaftlichen Durchbruch würdigt das Fachjournal „Nature“ nun mit einer Cover-Story.

Alice und Bob bekommen Gesellschaft: Bisher fand quantenkryptographisch verschlüsselte Kommunikation primär zwischen zwei aktiven Teilnehmern, zumeist Alice...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Tödliche Kombination: Medikamenten-Cocktail dreht Krebszellen den Saft ab

Zusammen mit einem Blutdrucksenker hemmt ein häufig verwendetes Diabetes-Medikament gezielt das Krebswachstum – dies haben Forschende am Biozentrum der Universität Basel vor zwei Jahren entdeckt. In einer Folgestudie, die kürzlich in «Cell Reports» veröffentlicht wurde, berichten die Wissenschaftler nun, dass dieser Medikamenten-Cocktail die Energieversorgung von Krebszellen kappt und sie dadurch abtötet.

Das oft verschriebene Diabetes-Medikament Metformin senkt nicht nur den Blutzuckerspiegel, sondern hat auch eine krebshemmende Wirkung. Jedoch ist die gängige...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz zu Usability und künstlicher Intelligenz an der Universität Mannheim

13.12.2018 | Veranstaltungen

Show Time für digitale Medizin-Innovationen

13.12.2018 | Veranstaltungen

ICTM Conference 2019 in Aachen: Digitalisierung als Zukunftstrend für den Turbomaschinenbau

12.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Forschungsprojekt FastCharge: Ultra-Schnellladetechnologie bereit für die Elektrofahrzeuge der Zukunft

13.12.2018 | Energie und Elektrotechnik

GFOS-Innovationsaward 2019: Anmeldung ab sofort möglich

13.12.2018 | Förderungen Preise

Quantenkryptographie ist bereit für das Netz

13.12.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics