Gammastrahlen zeugen von "fossilem Licht" im All

Gammastrahlen aus Quasaren verändern sich auf dem Weg durch den intergalaktischen Raum.

H.E.S.S.-Experiment misst Strahlung weit entfernter Quasare

RUB-Astrophysiker berichten in NATURE

Das europäische H.E.S.S.-Experiment aus Gammastrahlen-Teleskopen in Namibia hat zum ersten Mal hochenergetische Photonengammastrahlung von zwei weit entfernten Quasaren nachgewiesen. „Es ist eine Überraschung, dass diese Objekte mit dem H.E.S.S.-Experiment nachgewiesen wurden. Hochenergetische Photonen werden nämlich auf ihrem Weg durch den intergalaktischen Raum mit den dort vorhandenen Infrarot-Photonen von frühen Sternen und Galaxien durch Photon-Photon-Vernichtung absorbiert“, erklärt Prof. Reinhard Schlickeiser (Lehrstuhl für Weltraum- und Astrophysik der RUB). Das All ist für Gammastrahlen also durchlässiger als bisher angenommen, was bedeutet, dass die Obergrenze des im All vorhandenen Lichts geringer sein muss als geschätzt. Über ihre Ergebnisse berichten die Forscher in NATURE vom 20. April 2006.

Licht im Universum messen

Alle Objekte im Universum senden Licht aus, das sich gleichmäßig im intergalaktischen Raum verteilt. Die direkte Bestimmung der Menge dieses Lichts ist schwierig, weil es von anderen Quellen überstrahlt wird, etwa unserem Sonnensystem und der Milchstraße. Um dem „fossilen Licht“ auf die Spur zu kommen, nutzen die Forscher einen anderen Weg: Sie messen die Gammastrahlung, die von weit entfernten Objekten auf der Erde ankommt; sie gibt Aufschluss darüber, wie viel Licht sie auf ihrem Weg begegnet ist.

Überraschende Messungen gelungen

Eine Quelle für hochenergetische Gammastrahlung sind Quasare, kompakte, leuchtkräftige Objekte, deren Entfernung die Astrophysiker aus der Verschiebung ihrer optischen Emissionslinien hin zu längeren Wellenlängen, also in den „roten“ Wellenlängenbereich berechnen: Diese Verschiebung wächst proportional zum Abstand. Die relativ hohen Werte der Rotverschiebung der beiden Quasare H 2356-309 (Rotverschiebung z = 0.165) und 1ES 1101-232 (Rotverschiebung z = 0.185) zeigen, dass sie sich weit entfernt am Rand unseres Universums befinden. Dass die Gammastrahlung aus Quellen in dieser Entfernung noch messbar ist, ist für die Forscher überraschend: Bei Zusammenstößen von hochenergetischen Photonen aus Quasaren mit Photonen aus anderen Quellen im intergalaktischen Raum bilden sich Photon-Photon-Paare – die Strahlung wird dabei vernichtet. Die Energie der in den beiden Quasaren erzeugten Photonen (Energien größer als 100 Giga-Elektronenvolt = 0,1 TeV) ist aber hoch genug, um bei Zusammenstößen mit den niederenergetischen (0,01 eV) Infrarot-Photonen Elektron-Positron-Paare zu produzieren, wie von Einstein vorhergesagt. „Die Energiedichte der diffusen extragalaktischen Infrarot-Hintergrundsstrahlung muss um mindestens einen Faktor 10 kleiner sein als bisher geschätzt“, folgert Prof. Schlickeiser.

Physikalische Annahmen möglicherweise modifizieren

„Noch sind unsere Ergebnisse mir der uns bekannten Physik im Einklang. Sollten wir mit dem H.E.S.S.-Experiment noch weiter entfernte kosmologische Objekte mit größerer Rotverschiebung nachweisen, wird es allerdings kritisch“, stellt der Astrophysiker fest. „Dann müssen wir uns ernsthaft Gedanken über mögliche Modifizierungen unserer physikalischen Gesetze über Materie und Strahlung bei hohen Energien machen.“ Mögliche Modifizierungen könnten die Verletzung der Lorentz-Invarianz der speziellen Relativitätstheorie bei TeV-Energien oder einen nicht-kosmologischen Ursprung der Quasar-Rotverschiebung betreffen. Noch ist es verfrüht, solche radikalen Revisionen der physikalischen Gesetze einzufordern; die schiere Möglichkeit zeigt jedoch das enorme Potential der H.E.S.S.-Beobachtungen.

Gammastrahlungshimmel unter Beobachtung

Der Bochumer Lehrstuhl von Prof. Schlickeiser am Institut für Theoretische Physik ist an der europäischen H.E.S.S.-Kollaboration beteiligt. Außer ihm besteht die Bochumer H.E.S.S.-Arbeitsgruppe gegenwärtig aus Dipl.-Phys. Ralf Schröder und Dr. Andreas Shalchi. Am Lehrstuhl gehen die Forscher Fragestellungen der Hochenergieemission von astronomischen Objekten, insbesondere deren Teilchenbeschleunigung nach. Neben Supernova-Überresten stehen die diffuse galaktische Gammastrahlung, die aus Wechselwirkungen der Kosmischen Strahlung in unserer Milchstraße resultiert, und die Jet-Emission in Aktiven Galaktischen Kernen (AGN) im Fokus der Bochumer Forscher. Für die Erforschung dieses breiten Spektrums an Objekten am Gammastrahlungshimmel nutzen die Bochumer Forscher sowohl Satellitendaten als auch erdgebundene Experimente wie die Teleskope des H.E.S.S.-Experimentes.

Titelaufnahme

F. Aharonian et.al.: A low level of extragalactic background light as revealed by g-rays from blazers. In: Nature, Vol. 440, Nr. 7087, 20. April 2006

Weitere Informationen

Prof. Dr. Reinhard Schlickeiser, Lehrstuhl für Theoretische Physik IV, Fakultät für Physik und Astronomie der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-22032, Fax: 0234/32-14177, E-Mail: rsch@tp4.ruhr-uni-bochum.de

Media Contact

Dr. Josef König idw

Weitere Informationen:

http://www.ruhr-uni-bochum.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer