Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Es muss schon richtig kalt sein

18.04.2006


Privatdozent Dr. Thomas Gasenzer vom Institut für Theoretische Physik der Ruprecht-Karls-Universität Heidelberg nutzt Heisenberg-Stipendium zur Erforschung der Dynamik ultrakalter Gase



Kalte Gase haben es dem Privatdozenten Dr. Thomas Gasenzer vom Institut für Theoretische Physik der Heidelberger Ruprecht-Karls-Universität angetan. Das Wort "kalt" bedeutet in diesem Zusammenhang extrem kalt, nämlich ganz nahe der absoluten Tiefsttemperatur von minus 273,15 Grad Celsius. Unter diesen Bedingungen ist es möglich, Materie in einen besonderen Zustand zu bringen, das so genannte Bose-Einstein-Kondensat. Hierbei verhalten sich die Atome absolut gleich, wie ein einziges Superatom. Dieser Materie-Zustand wurde 1925 von Albert Einstein vorhergesagt, inspiriert durch eine bahnbrechende Arbeit des indischen Physikers Satyendra Nath Bose. Aber erst 70 Jahre später gelang es, ein reines Bose-Einstein-Kondensat tatsächlich im Labor zu erzeugen.



"Die Methoden zur Herstellung des Bose-Einstein-Kondensats haben die Atomphysik revolutioniert", erklärt der 37-jährige Physiker Gasenzer. In der äußerst dünnen Gaswolke, die aus etwa 1000 bis einigen Millionen Atomen besteht, bewegen sich die Teilchen nämlich fast nicht mehr, und damit wird es möglich, Eigenschaften der Atome wesentlich besser zu messen und zu verstehen. So kann das Bose-Einstein-Kondensat auch Auswirkungen auf das alltägliche Leben haben, ist doch heute die Zeit über die Frequenz der Schwingung des Cäsium-Atoms definiert. Die Länge einer Sekunde kann nur so genau wie die Frequenz des "Tickens" der Cäsiumuhr bekannt sein. Die heute erreichte Genauigkeit spielt beispielsweise beim Global Positioning System (GPS) eine große Rolle. Denn nur dadurch, dass die Uhren in den Satelliten gleich gehen, ist es möglich, genaue Ortsbestimmungen vorzunehmen.

Das kürzlich an Thomas Gasenzer verliehene Heisen-berg-Stipendium der Deutschen Forschungs-gemein-schaft möchte er nutzen, um in den nächsten fünf Jahren mehr Wissen über die Dynamik dieser kalten Gase zu gewinnen. Wie bewegen sich beispielsweise diese Systeme, wenn sie plötzlich aus ihrer Ruhe gerissen werden? Eine Frage, der Thomas Gasenzer zusammen mit der von ihm geleiteten Arbeitsgruppe nachgehen will, denn bisher sind die theoretischen Grundlagen zur Beschreibung derartiger Vorgänge wenig erforscht.

Die Bewegung der Atome in den Gaswolken kann sehr leicht eine Gestalt wie die von Turbulenzen in einem reißenden Wildbach annehmen. Ganz anders als im Bach sind jedoch die Atome im Kondensat 1000 Mal weiter voneinander entfernt, so dass sie zunächst einmal seltener aneinander stoßen. Trotzdem "spüren" sie sich, und das liegt daran, dass sie sich als so genannte Quantenteilchen in ihrer Restbewegung gleich verhalten und so absolut ununterscheidbar sind. Wenn aber das Kondensat in Unruhe versetzt wird, beginnt es zu schwingen und sich aufzulösen. Die Atome stoßen dann häufiger aneinander, und es entsteht eine faszinierende Komplexität.

Zur Beobachtung der Bewegung eines Bose-Einstein-Kondensats haben die Physiker im Labor ausgefeilte und doch erstaunlich einfach erscheinende Methoden entwickelt: "Man schickt zum Beispiel den Lichtstrahl eines Lasers durch das Kondensat und nimmt ihn mit einer Videokamera auf. Aus der Bewegung des Schattens der Atome schließt man auf deren Dynamik", erläutert Thomas Gasenzer. Als theoretischer Physiker ist er auch auf die Überprüfung seiner Überlegungen im Labor angewiesen. "Dabei ist für mich wichtig zu wissen, was genau bei Experimenten machbar ist", betont er. Deshalb unterhält er enge Kontakte zu den Heidelberger Professoren Jörg Schmiedmayer vom Physikalischen Institut und Markus Oberthaler vom Kirchhoff-Institut für Physik, die beide experimentell an Bose-Einstein-Kondensaten forschen.

Die Berechnungen, die der theoretische Physiker Gasenzer im mikroskopischen Maßstab des aus einer Art von Atomen bestehenden Bose-Einstein-Kondensates vornimmt, können aber auch Konsequenzen für große Vielteilchensysteme haben. Dazu gehört beispielsweise auch das Universum, das in einem frühen Stadium sehr schnell expandierte, und die physikalischen Bewegungsgesetze hierfür sind eng mit denen für ultrakalte Atomgase verwandt.
Stefan Zeeh

Rückfragen bitte an:
Privatdozent Dr. Thomas Gasenzer
Institut für Theoretische Physik
Universität Heidelberg
Philosophenweg 16, 69120 Heidelberg
Tel. 06221 549416
t.gasenzer@thphys.uni-heidelberg.de

Dr. Michael Schwarz
Pressesprecher der Universität Heidelberg
Tel. 06221 542310, Fax 542317
michael.schwarz@rektorat.uni-heidelberg.de

Dr. Michael Schwarz | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Berichte zu: Atom Bose-Einstein-Kondensat Kondensat Physik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Grüne Spintronik: Mit Spannung Superferromagnetismus erzeugen
15.02.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Regensburger Physiker beobachten, wie es sich Elektronen gemütlich machen
14.02.2019 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Grüne Spintronik: Mit Spannung Superferromagnetismus erzeugen

Ein HZB-Team hat zusammen mit internationalen Partnern an der Lichtquelle BESSY II ein neues Phänomen in Eisen-Nanokörnern auf einem ferroelektrischen Substrat beobachtet: Die magnetischen Momente der Eisenkörner richten sich superferromagnetisch aus, sobald eine elektrische Spannung anliegt. Der Effekt funktioniert bei Raumtemperatur und könnte zu neuen Materialien für IT-Bauelemente und Datenspeicher führen, die weniger Energie verbrauchen.

In heutigen Datenspeichern müssen magnetische Domänen mit Hilfe eines externen Magnetfeld umgeschaltet werden, welches durch elektrischen Strom erzeugt wird....

Im Focus: Regensburger Physiker beobachten, wie es sich Elektronen gemütlich machen

Und können dadurch mit ihrer neu entwickelten Mikroskopiemethode Orbitale einzelner Moleküle in verschiedenen Ladungszuständen abbilden. Die internationale Forschergruppe der Universität Regensburg berichtet über ihre Ergebnisse unter dem Titel “Mapping orbital changes upon electron transfer with tunnelling microscopy on insulators” in der weltweit angesehenen Fachzeitschrift ,,Nature‘‘.

Sie sind die Grundbausteine der uns umgebenden Materie - Atome und Moleküle. Die Eigenschaften der Materie sind oftmals jedoch nicht durch diese Bausteine...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: Universität Konstanz gewinnt neue Erkenntnisse über die Entwicklung des Immunsystems

Wissenschaftler der Universität Konstanz identifizieren Wettstreit zwischen menschlichem Immunsystem und bakteriellen Krankheitserregern

Zellbiologen der Universität Konstanz publizieren in der Fachzeitschrift „Current Biology“ neue Erkenntnisse über die rasante evolutionäre Anpassung des...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zum Thema Desinformation in Online-Medien

15.02.2019 | Veranstaltungen

FfE-Energietage 2019 - Die Energiewelt heute und morgen vom 1. bis 4. April 2019 in München

15.02.2019 | Veranstaltungen

Deutscher Fachkongress für kommunales Energiemanagement: Fokus Energie – Architektur – BauKultur

13.02.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Katalysatoren - Fluktuationen machen den Weg frei

15.02.2019 | Biowissenschaften Chemie

Berührungsgeschützt, kompakt, einfach: Rittal erweitert Board-Technologie

15.02.2019 | Energie und Elektrotechnik

Wie kann digitales Lernen gelingen? Lern-Prototypen werden auf der didacta vorgestellt

15.02.2019 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics