Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Es muss schon richtig kalt sein

18.04.2006


Privatdozent Dr. Thomas Gasenzer vom Institut für Theoretische Physik der Ruprecht-Karls-Universität Heidelberg nutzt Heisenberg-Stipendium zur Erforschung der Dynamik ultrakalter Gase



Kalte Gase haben es dem Privatdozenten Dr. Thomas Gasenzer vom Institut für Theoretische Physik der Heidelberger Ruprecht-Karls-Universität angetan. Das Wort "kalt" bedeutet in diesem Zusammenhang extrem kalt, nämlich ganz nahe der absoluten Tiefsttemperatur von minus 273,15 Grad Celsius. Unter diesen Bedingungen ist es möglich, Materie in einen besonderen Zustand zu bringen, das so genannte Bose-Einstein-Kondensat. Hierbei verhalten sich die Atome absolut gleich, wie ein einziges Superatom. Dieser Materie-Zustand wurde 1925 von Albert Einstein vorhergesagt, inspiriert durch eine bahnbrechende Arbeit des indischen Physikers Satyendra Nath Bose. Aber erst 70 Jahre später gelang es, ein reines Bose-Einstein-Kondensat tatsächlich im Labor zu erzeugen.



"Die Methoden zur Herstellung des Bose-Einstein-Kondensats haben die Atomphysik revolutioniert", erklärt der 37-jährige Physiker Gasenzer. In der äußerst dünnen Gaswolke, die aus etwa 1000 bis einigen Millionen Atomen besteht, bewegen sich die Teilchen nämlich fast nicht mehr, und damit wird es möglich, Eigenschaften der Atome wesentlich besser zu messen und zu verstehen. So kann das Bose-Einstein-Kondensat auch Auswirkungen auf das alltägliche Leben haben, ist doch heute die Zeit über die Frequenz der Schwingung des Cäsium-Atoms definiert. Die Länge einer Sekunde kann nur so genau wie die Frequenz des "Tickens" der Cäsiumuhr bekannt sein. Die heute erreichte Genauigkeit spielt beispielsweise beim Global Positioning System (GPS) eine große Rolle. Denn nur dadurch, dass die Uhren in den Satelliten gleich gehen, ist es möglich, genaue Ortsbestimmungen vorzunehmen.

Das kürzlich an Thomas Gasenzer verliehene Heisen-berg-Stipendium der Deutschen Forschungs-gemein-schaft möchte er nutzen, um in den nächsten fünf Jahren mehr Wissen über die Dynamik dieser kalten Gase zu gewinnen. Wie bewegen sich beispielsweise diese Systeme, wenn sie plötzlich aus ihrer Ruhe gerissen werden? Eine Frage, der Thomas Gasenzer zusammen mit der von ihm geleiteten Arbeitsgruppe nachgehen will, denn bisher sind die theoretischen Grundlagen zur Beschreibung derartiger Vorgänge wenig erforscht.

Die Bewegung der Atome in den Gaswolken kann sehr leicht eine Gestalt wie die von Turbulenzen in einem reißenden Wildbach annehmen. Ganz anders als im Bach sind jedoch die Atome im Kondensat 1000 Mal weiter voneinander entfernt, so dass sie zunächst einmal seltener aneinander stoßen. Trotzdem "spüren" sie sich, und das liegt daran, dass sie sich als so genannte Quantenteilchen in ihrer Restbewegung gleich verhalten und so absolut ununterscheidbar sind. Wenn aber das Kondensat in Unruhe versetzt wird, beginnt es zu schwingen und sich aufzulösen. Die Atome stoßen dann häufiger aneinander, und es entsteht eine faszinierende Komplexität.

Zur Beobachtung der Bewegung eines Bose-Einstein-Kondensats haben die Physiker im Labor ausgefeilte und doch erstaunlich einfach erscheinende Methoden entwickelt: "Man schickt zum Beispiel den Lichtstrahl eines Lasers durch das Kondensat und nimmt ihn mit einer Videokamera auf. Aus der Bewegung des Schattens der Atome schließt man auf deren Dynamik", erläutert Thomas Gasenzer. Als theoretischer Physiker ist er auch auf die Überprüfung seiner Überlegungen im Labor angewiesen. "Dabei ist für mich wichtig zu wissen, was genau bei Experimenten machbar ist", betont er. Deshalb unterhält er enge Kontakte zu den Heidelberger Professoren Jörg Schmiedmayer vom Physikalischen Institut und Markus Oberthaler vom Kirchhoff-Institut für Physik, die beide experimentell an Bose-Einstein-Kondensaten forschen.

Die Berechnungen, die der theoretische Physiker Gasenzer im mikroskopischen Maßstab des aus einer Art von Atomen bestehenden Bose-Einstein-Kondensates vornimmt, können aber auch Konsequenzen für große Vielteilchensysteme haben. Dazu gehört beispielsweise auch das Universum, das in einem frühen Stadium sehr schnell expandierte, und die physikalischen Bewegungsgesetze hierfür sind eng mit denen für ultrakalte Atomgase verwandt.
Stefan Zeeh

Rückfragen bitte an:
Privatdozent Dr. Thomas Gasenzer
Institut für Theoretische Physik
Universität Heidelberg
Philosophenweg 16, 69120 Heidelberg
Tel. 06221 549416
t.gasenzer@thphys.uni-heidelberg.de

Dr. Michael Schwarz
Pressesprecher der Universität Heidelberg
Tel. 06221 542310, Fax 542317
michael.schwarz@rektorat.uni-heidelberg.de

Dr. Michael Schwarz | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Berichte zu: Atom Bose-Einstein-Kondensat Kondensat Physik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht
21.09.2018 | Forschungszentrum Jülich

nachricht NOEMA: Halbzeit für das im Bau befindliche Superteleskop
20.09.2018 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics