Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hightech im Nanoformat: Wie man Milliarden Quantenpunkte in den Griff bekommt und nutzt

19.01.2006


Professor Dieter Bimberg von der TU Berlin erhält den Max-Born-Preis 2006 für seine Pionierarbeiten im Bereich der Nanophysik und Nanophotonik



Für seine herausragenden wissenschaftlichen Beiträge zur Entwicklung, zum Verständnis und zur Anwendung von Halbleiter-Nanostrukturen wird Dieter Bimberg, Physikprofessor an der TU Berlin, mit dem Max-Born-Preis 2006 geehrt. Er wird von der Deutschen Physikalischen Gesellschaft und dem britischen Institute of Physics am 19. Januar 2006 in London überreicht.



Dieter Bimberg gilt als Pionier der Quantenpunktphysik und -technologie. Seine Forschungsarbeiten legten das Fundament für technische Anwendungen wie den Quantenpunktlaser, der wiederum optische Kommunikationsnetze und Quantenkryptographie revolutionieren könnte. Die von ihm hergestellten und untersuchten Quantenpunkte sind winzige aus Atomen bestehende Pyramiden, die im gleichen Moment in riesiger Zahl einander selbstähnlich per "Selbstorganisation" auf einer Halbleiteroberfläche heranwachsen können. Sie finden zu mehreren zehn Milliarden auf einem Quadratzentimeter Platz und können Licht mit neuartigen Eigenschaften in Frequenzbereiche ausstrahlen, die für übliche Halbleiterlichtemitter und -laser - zumindest bislang - unerreichbar sind.

Seit 1993 beschäftigt sich die Arbeitsgruppe von Prof. Dr. Dieter Bimberg mit solchen Methoden zur Selbstorganisation. Im Ergebnis entstand der weltweit erste Quantenpunktlaser, den die TU-Wissenschaftler 1994 gemeinsam mit dem Ioffe-Institut in St. Petersburg und dem russischen Physik-Nobelpreisträger Prof. Dr. Zhores I. Alferov demonstrieren konnten. Hierfür erhielt Dieter Bimberg bereits 2003 vom russischen Staatspräsidenten Putin als erster Ausländer seit 1955 den "Russischen Staatspreis für Wissenschaft und Technologie". Prof. Dr. Dieter Bimberg ist der weltweit am häufigsten zitierte Wissenschaftler auf dem Gebiet der Quantenpunkte. Von den 20 meistzitierten Wissenschaftlern auf diesem Gebiet gehören zwölf der von ihm geleiteten deutsch-russischen Arbeitsgruppe an (Quelle: ISI Essential Science Indicators SM, www.esi-topics.com/quantumdots/authors/b1a.html).

Momentan betreut Prof. Dr. Dieter Bimberg Forschungsprojekte mit einem Volumen von rund 3,5 Millionen Euro. Er leitet das nationale Kompetenzzentrum Nano-Optoelektronik des Bundesministeriums für Bildung und Forschung, in dem 40 Hochschulen, Institute, Firmen, Banken und venture capital Firmen kooperativ zur Entwicklung und Nutzung derartiger Technologien zusammenarbeiten. Weiterhin ist er Sprecher eines Sonderforschungsbereiches der Deutschen Forschungsgemeinschaft, der sich mit theoretischen und experimentellen Grundlagenaspekten des Wachstums von Nanostrukturen und deren physikalischen Eigenschaften befasst. Seine Arbeiten werden auch im Rahmen des Zukunftsfonds des Landes Berlins, des "ProFit-Programms" der Berliner Wirtschaftsverwaltung und eines Exzellenznetzes der EU gefördert.

Das Institut für Festkörperphysik der TU Berlin, dessen Leiter Prof. Dr. Dieter Bimberg ist, stellt zurzeit die größte halbleitertechnologische Ausbildungsstätte Deutschlands mit ungefähr 150 Mitarbeiterinnen und Mitarbeitern (Studierenden, Doktorandinnen und Doktoranden, Nachwuchswissenschaftlerinnen und Nachwuchswissenschaftlern, Ingenieurinnen und Ingenieuren etc.) dar.

Der Max-Born-Preis wird für besonders wertvolle und aktuelle wissenschaftliche Beiträge zur Physik in Erinnerung an das Wirken des Pioniers der Quantenphysik und Nobelpreisträgers Max Born in Großbritannien und Deutschland verliehen. Er wird jährlich abwechselnd einem/einer britischen und einem/einer deutschen Physiker/in zuerkannt.

Weitere Informationen erteilt Ihnen gern: Prof. Dr. Dieter Bimberg, Institut für Festkör-perphysik der TU Berlin, Tel.: 030/314-22783, E-Mail: bimberg@physik.tu-berlin.de, Homepage: http://sol.physik.tu-berlin.de/htm_group/welcome.html

Ramona Ehret | idw
Weitere Informationen:
http://www.tu-berlin.de/presse/pi/2006/pi14.htm
http://www.esi-topics.com/quantumdots/authors/b1a.html
http://www.dpg-physik.de/dpg/preise/preistraeger/max-born-preis.pdf

Weitere Berichte zu: Quantenpunkt Quantenpunktlaser

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht
21.09.2018 | Forschungszentrum Jülich

nachricht NOEMA: Halbzeit für das im Bau befindliche Superteleskop
20.09.2018 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics