Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

CONDORs erster Blick ins Weltall

22.12.2005


Das APEX (Atacama Pathfinder EXperiment) Teleskop auf 5.100 Meter Höhe in den chilenischen Anden. Hier wurden die ersten Terahertz-Beobachtungen mit CONDOR, dem CO N+ Deuterium Observation Receiver, durchgeführt. APEX ist bisher das einzige Teleskop der 12-Meter-Klasse weltweit, an dem bei solch hohen Radiofrequenzen im Submillimeter-Bereich gemessen werden kann. Bild: Arnaud Belloche


Sternentstehung im südlichen Teil des Orionnebels. Das Spektrum oben rechts zeigt sehr hoch angeregtes Kohlenmonoxidgas bei 1,5 THz, das mit CONDOR aufgenommen wurde. Die Linie ist ein deutlicher Hinweis für heißes Gas in diesem Sternentstehungsgebiet. Das optische Bild vom Hubble Space Telescope im Hintergrund zeigt weiter entwickelte Sterne sowie Staub und Gas. Es lässt aber die Quelle FIR 4 nicht erkennen, die hinter dichtem Staub verborgen ist. Die CONDOR-Beobachtungen erlauben jetzt, diese massereiche Sternentstehungsregion sichtbar zu machen. Bild: ESA/NASA/CONDOR


Neuartiger Hochfrequenzempfänger am APEX-Teleskop in Chile liefert erste Ergebnisse

... mehr zu:
»APEX »CONDOR »Teleskop

CONDOR, ein neuartiger Detektor des Atacama Pathfinder Experiments (APEX) in der chilenischen Wüste, hat im November 2005 heißes Gas in unmittelbarer Umgebung junger, massereicher Sterne bei extrem hohen Radiofrequenzen von 1,5 Terahertz (THz) - also 1,5 Billionen Hertz - nachgewiesen. CONDOR ermöglicht erstmals Beobachtungen in dem bisher nicht zugänglichen Frequenzbereich an einem Teleskop der 12-Meter-Klasse. Die überraschenden Ergebnisse bestätigen die Erwartungen, durch dieses neuartige Fenster noch unbekannte Phänomene im Weltall aufspüren zu können. Am erfolgreichen Einsatz des CONDOR-Empfängers beteiligt sind Mitarbeiter des I. Physikalischen Instituts der Universität zu Köln sowie des Max-Planck-Instituts für Radioastronomie in Bonn.

"CONDOR hat unsere Erwartungen voll erfüllt", freut sich Dr. Martina Wiedner, die Leiterin des CONDOR-Projekts (CO N+ Deuterium Observation Receiver). "Wir hatten den Empfänger gut vorbereitet, hatten ein exzellentes Forscherteam auf dem Berg, aber auch ein wenig Glück mit dem Wetter." In ihrer Nachwuchsgruppe an der Universität zu Köln wurde der Empfänger aufgebaut. Da sich die hochfrequenten elektromagnetischen Wellen - die Frequenzen sind Tausend mal höher als die eines Mobiltelefons und Millionen mal höher als die eines UKW Senders - nur schwer detektieren lassen, nutzt der Empfänger neueste technologische Entwicklungen. Sehr wichtig war dabei der Einsatz der hochempfindlichen "Hot Electron Bolometer"-Mischer, die in der Gruppe von Dr. Karl Jacobs an der Universität zu Köln entwickelt worden waren. Diese Mischer dienen dazu, die hochfrequenten Radiowellen zur Weiterverarbeitung auf Frequenzen von etwa einem Gigahertz herunterzusetzen. Um eine hohe Empfindlichkeit des Empfängers zu erreichen, wird der Empfänger auf Temperaturen von ca. minus 269 Grad Celsius, also nur vier Grad über dem absoluten Nullpunkt heruntergekühlt.


Terahertz-Beobachtungen sind nur möglich an Teleskopstandorten mit außergewöhnlich wenig Wasserdampf in der Erdatmosphäre, denn der Wasserdampf absorbiert die Terahertz-Strahlung. In einer Höhe von 5.100 Meter über dem Meeresspiegel ist APEX das bisher größte Teleskop an einem solchen Ort. APEX besteht aus einem Spiegel mit einem Durchmesser von 12 Metern, der mit einer Genauigkeit von 15 Mikrometern (sieben Mal dünner als ein menschliches Haar!) einer perfekten Parabel gleicht. Dieses Teleskop ist zurzeit mit verschiedenen Radioempfängern zwischen 300 und 900 Gigahertz ausgestattet. CONDOR ist der erste Empfänger am APEX Teleskop, der elektromagnetische Wellen oberhalb der technologisch anspruchsvollen Frequenzgrenze von einem Terahertz nachweisen kann. "Dies sind die höchsten Frequenzen, die wir je von APEX aus werden beobachten können", erklärt der APEX-Projektmanager Dr. Rolf Güsten. "Bei noch höheren Frequenzen blockiert die Erdatmosphäre den Blick in den Weltraum und lässt erst wieder im Infraroten astronomische Beobachtungen zu."

Die neuen Beobachtungen von CONDOR am APEX-Teleskop dringen in das fast unbekannte Universum der Terahertz-Strahlung vor. "So wie man im optischen Licht in verschiedenen Farben verschiedene Dinge sieht und man viel ‚übersehen’ würde, wenn man zum Beispiel nur Blaues erkennen könnte, so bringt auch jede neue ‚Radiofarbe’ neue Erkenntnisse mit sich," erklärt Dr. Martina Wiedner. "Terahertz-Strahlung ist besonders gut geeignet, um heißes Gas in Molekülwolken anhand typischer Strahlung (genauer: hoher Rotationsübergängen) des Kohlenmonoxid-Moleküls (CO) zu beobachten. Da Sterne durch eine Verdichtung von Staub und Gas entstehen, geben die Beobachtungen im Terahertz-Bereich Aufschlüsse über die Bildung von Sternen."

Beim ersten Einsatz des CONDOR-Empfängers wurden CO-Linien bei 1,5 Terahertz nachgewiesen (s. Abb. 2). Das APEX-Teleskop war auf verschiedene Objekte im Orionnebel gerichtet. Überrascht waren die Astronomen über die "Schärfe" der aufgenommenen Linien, denn es wurden wesentliche größere Breiten der Spektrallinien erwartet. Diese Beobachtungen bestätigen die Vermutung, dass das Gas von der ultravioletten (UV) Strahlung des entstehenden Sternes aufgewärmt wird und nicht durch Zusammenstöße von Gas, wie ursprünglich angenommen.

Weitere Informationen erhalten Sie von:

Dr. Martina Wiedner (Gruppenleiterin des CONDOR-Projekts)
I. Physikalisches Institut, Universität zu Köln, Köln
Tel.: 0221 470-3484
E-Mail: wiedner@ph1.uni-koeln.de

Dr. Rolf Güsten (APEX Projekt-Manager)
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: 0228 525-383
E-Mail: rguesten@mpifr-bonn.mpg.de

Prof. Jürgen Stutzki (SFB-Sprecher und Direktor des I. Physikalischen Institutes)
I. Physikalisches Institut, Universität zu Köln, Köln
Tel.: 0221 470-3494
E-Mail: stutzki@ph1.uni-koeln.de

Prof. Karl Menten (APEX Principal Investigator)
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: 0228 525-297
E-Mail: kmenten@mpifr-bonn.mpg.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: APEX CONDOR Teleskop

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp
18.10.2019 | Forschungsverbund Berlin e.V.

nachricht Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED
17.10.2019 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics