Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Zukunft des Internet für die Astronomie

19.09.2005


Startschuss für eine bundesweite Vernetzung astronomischer Daten - Zentrum für Astronomie der Universität Heidelberg beteiligt - Max-Planck-Institut für Astronomie (Heidelberg) assoziierter Partner

... mehr zu:
»Astronomie »Garching »Grid

Am 21. September starten führende astronomische Forschungsinstitute, Forschungsgruppen der Informatik sowie einige Hochleistungsrechenzentren in Deutschland den Aufbau einer bundesweiten Datenvernetzung für die Astronomie. Ziel dieses so genannten AstroGrids (German Astronomy Community Grid, GACG) ist es, eine Infrastruktur für die gemeinsame Nutzung von Ressourcen wie Hochleistungsrechnern, Beobachtungs - und Simulationsdaten und von Teleskopen zu schaffen. Auch Beobachtungen über robotische Teleskope sollen direkt eingebunden werden, so dass sowohl Datengewinnung als auch Auswertung über das Internet durchgeführt werden kann.

Die Leistungsfähigkeit moderner Teleskope und ihrer Detektoren steigt fortwährend. Jedoch sind die faszinierend detailreichen Bilder des Universums auch mit extrem großen Datenmengen verbunden. Die neueren astronomischen Instrumente liefern Rohdatensätze, die in der Größenordnung von dutzenden Terabyte pro Nacht liegen. Zum Vergleich: Eine CD hat 700 MB, 1 Terabyte entspricht also 1428 CDs. Die Übertragung solcher Datenmengen würde über das herkömmliche Internet Tage bis Wochen in Anspruch nehmen. Ziel des AstroGrids ist es, astronomische Datenflüsse zu beschleunigen und zu optimieren. Durch den Einsatz moderner Grid - Technologien werden die nötigen astronomischen Analyse - Programme zu den Rohdaten hin transportiert und nur die wesentlichen Informationen, also die bereits bearbeiteten Daten zum Astronomen über das Netz zurückübertragen. Auch die Steuerung von Teleskopen wird in Zukunft ohne aufwändige Reisekosten direkt an den heimischen Arbeitsplatz des Astronomen verlegt werden.


Die Zukunft der Astronomie geht in vielerlei Hinsicht Hand in Hand mit der fortlaufenden Entwicklung auf dem Gebiet der Computer - Technologie und Informatik. Die Einbindung von Hochleistungsrechnern in das Grid eröffnet auch eine neue Dimension, kosmische Prozesse im Computer zu modellieren und mit Beobachtungsdaten zu vergleichen. Ein mögliches Anwendungsbeispiel für die Notwendigkeit, die Beobachtungsstrategie kurzfristig zu verändern, liefern Sternexplosionen, Gammastrahlen-Ausbrüche oder so genannte Supernovae. Bei diesen plötzlich auftretenden und seltenen Ereignissen können Teleskope, die in verschiedenen Wellenlängen arbeiten, gleichzeitig auf dieses Objekt gerichtet werden. Und es wird möglich, die zeitliche Entwicklung von Himmelsobjekten stärker in die Beobachtungsprogramme einzubeziehen.

Mit Hilfe dieser neuen Softwaretechnologien und den Arbeiten des German Astrophysical Virtual Observatory (GAVO) wird dem Astronomen in Zukunft ein integriertes virtuelles Teleskop zur Verfügung stehen, eine Art künstlicher Augen, die vollautomatisch das ganze Spektrum von Radiowellen, über sichtbares Licht bis hin zu Röntgenstrahlen wahrnehmen, und angefangen bei der Sonne und den Planeten, über Sterne und Galaxien bis hin an den Rand des Universums blicken.

Ähnlich der Entwicklung des World Wide Web, von einem einfachen, internen Informationssystem unter Physikern im CERN, zum "Internet", dem Werkzeug für jedermann, wie wir es heute kennen, werden diese Grid - Methoden auch für andere wissenschaftliche Fachbereiche nutzbar sein, und in nicht allzu ferner Zukunft auch in kommerzielle Bereiche vordringen und der Allgemeinheit zur Verfügung stehen.

An der German Astronomy Community Grid (GACG)- Initiative beteiligen sich unter Leitung des Astrophysikalischen Institut Potsdam (AIP) die folgenden Institute:

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Golm
Konrad-Zuse-Zentrum für Informationstechnik, Berlin (ZIB)
Max-Planck-Institut für Astrophysik, Garching (MPA)
Max-Planck-Institut für Extraterrestrische Physik, Garching (MPE)
Technische Universität München, Institut für Informatik (In.TUM)
Universität Heidelberg, Zentrum für Astronomie Heidelberg (ZAH)

Als assoziierte Partner sind darüber hinaus beteiligt:

Max-Planck-Institut für Astronomie, Heidelberg (MPIA)
Max-Planck-Institut für Radioastronomie, Bonn (MPIfR)
Universität Potsdam, FB Informatik
Universitätssternwarte München (USM)
Leibniz-Rechenzentrum München (LRZ)
Rechenzentrum Garching (RZG)
Forschungszentrum Karlsruhe (FZK)

Rückfragen bitte an:

Prof. Dr. Joachim Wambsganss
Zentrum für Astronomie der Universität Heidelberg (ZAH)
Geschäftsführender Direktor
Tel. 06221 541800, 541801 (Sekr), Fax 541802
jkw@ari.uni-heidelberg.de

Dr. Michael Schwarz
Pressesprecher der Universität Heidelberg
Tel. 06221 542310, Fax 542317
michael.schwarz@rektorat.uni-heidelberg.de

Dr. Michael Schwarz | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Berichte zu: Astronomie Garching Grid

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics