Tübinger Wissenschaftler weisen Planeten in anderen Sonnensystemen nach

Meilenstein bei der Suche nach erdähnlichen Planeten

Astronomen der Universität Tübingen, der Hamburger Sternwarte und der Europäischen Südsternwarte in Chile ist es gelungen, einen Planeten mit der sogenannten Transit-Methode zu entdecken. Mit dieser Technik suchen die Forscher nach Planeten, deren Umlaufbahn gerade so geneigt ist, daß der Planet auf seiner Bahn von der Erde aus betrachtet vor dem Stern vorüber zieht. Eine solche „Sternfinsternis“ führt zu einer Abschwächung der Sternhelligkeit um etwa ein Prozent. Eine derartige periodische Lichtabschwächung ist nun bei dem Stern OGLE-TR-3 beobachtet worden, das Team um die Tübinger Astronomen hat anschließend die Masse des Planeten bestimmt. Nach Ansicht der Wissenschaftler ist damit ein wesentlicher Schritt auf dem Weg zur Entdeckung erdähnlichen Planeten bei anderen Sternen getan.

Diese Transits erlauben nun die Bestimmung des Planetenradius und eine genauere Festlegung der Planetenmasse, deren Beobachtung ist daher ein wesentlicher Schritt zur Entdeckung von erdähnlichen Planeten um andere Sterne. Mit der Transit-Methode können also sehr viel genauere Angaben für die Erkundung der Planeteneigenschaften gewonnen werden. Darüber hinaus eröffnet ein Planetentransit auch die Möglichkeit, die Planetenatmosphäre zu untersuchen. Zwar war bereits 1995 der erste indirekte Nachweis eines Planeten um einen sonnenähnlichen Stern gelungen, doch beschränkten sich die Nachweismöglichkeiten damals noch auf sehr große Gasplaneten wie den Jupiter. Erst mit der Transit-Methode kann man auch kleinere, erdähnliche Planeten um sonnenähnliche Sterne beobachten. Allerdings gibt es noch andere mögliche Erklärungen für die bei dem System OGLE-TR-3 beobachtete periodische Lichtabschwächung als eine extra-solare Sonnenfinsternis, wie Dr. Stefan Dreizler, Prof. Dr. Klaus Werner und Prof. Dr. Wilhelm Kley von der Universität Tübingen einräumen. Deshalb steht eine endgültige Bestätigung noch aus.

Der Nachweis von Planeten außerhalb unseres Sonnensystems ist seit langer Zeit ein Ziel der Astronomie. Neben weltanschaulichen Fragestellungen nach der Einzigartigkeit unserer Erde oder der Vielfalt von Lebensmöglichkeiten in anderen Teilen des Universums, hoffen die Astronomen auch sehr viel bessere Kenntnis über die Entstehung von Planeten und Planetensystemen zu erhalten. Dies ist nur möglich, wenn man einen repräsentativen Querschnitt von Planeten beobachten kann und nicht nur auf unser eigenes solares System beschränkt ist.

Weitere Informationen:

Prof. Dr. Klaus Werner
E-mail: werner@astro.uni-tuebingen.de
Tel. 07071 – 2978601

Dr. Stefan Dreizler
E-mail: dreizler@astro.uni-tuebingen.de
Tel. 07071 – 2978612

Prof. Dr. Wilhelm Key
E-mail: kley@tat.physik.uni-tuebingen.de)
Tel. 07071 – 2974007

Institut für Astronomie und Astrophysik
Abteilung Astronomie
Sand 1, D-72076 Tübingen

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer