Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Durchsichtige Transistoren aus der Wiege der Elektronik

26.05.2008
Forscher der Universität Leipzig haben einen transparenten Transistor mit so hervorragenden elektrischen Eigenschaften vorgestellt, dass er weite Anwendung in Displaytechnik und Biotechnologie finden kann.

Der von einem Team um Prof. Dr. Marius Grundmann am Institut für Experimentelle Physik II der Fakultät für Physik und Geowissenschaften entwickelte Metall-Halbleiter Feldeffekt-Transistor, kurz MESFET, wartet mit einem gleichrichtenden Silberkontakt an der Steuerelektrode auf.

Als Material für den Stromfluss wurde der Halbleiter Zinkoxid gewählt; die Strom transportierende Schicht ist nur 20 Nanometer dick. "Zinkoxid hat die besondere Eigenschaft, transparent zu sein und gleichzeitig dabei einen Stromfluss zu erlauben", erläutert Professor Grundmann.

Damit wird der Transistor insgesamt durchsichtig und man kann damit elektrische Schaltungen bauen, die ebenfalls transparent sind, was für transparente Displays und neuartige Anwendungen in der Mikroskopie von großer Bedeutung ist. Der transparente MESFET, TMESFET genannt, weist derart hervorragende elektrische Eigenschaften auf, dass der Bericht der Forscher umgehend in der wichtigsten Zeitschrift für Angewandte Physik, den "Applied Physics Letters" des American Institute of Physics, angenommen und veröffentlicht wurde.

... mehr zu:
»MESFET »Stromfluss »Transistor

"Transparente Elektronik befindet sich schon jetzt auf jedermanns Schreibtisch", sagt Professor Grundmann. "Beim Flachbildschirm eines Laptops oder TV-Geräts sieht man immer durch eine transparente Elektrode hindurch. Diese kontaktiert die leuchtenden Pixel von vorne und bestehen zumeist aus Indiumzinnoxid. Die Transistoren auf Siliziumbasis, die das Display logisch ansteuern, sitzen allerdings hinter dem Display, da sie nicht durchsichtig sind. Transparente Displays werden zukünftig eine wichtige Rolle spielen, beispielsweise bei der Anzeige von Navigations-Informationen auf der Windschutzscheibe von Fahrzeugen. Objekte wie ein Tisch oder Kühlschrank können durch transparente Elektronik interaktiv gemacht werden, ohne dass ihr Aussehen dadurch gestört wird."

Der Strom des transparenten Leipziger MESFET kann durch Variation einer Spannung um etwa plus minus 1 V um den Faktor von gut zehn Millionen verändert werden und besitzt somit eine große Verstärkung (genauer: Steilheit). "Der maximale Strom reicht dabei gut aus, um einen Displaypixel treiben zu können", berichtet Heiko Frenzel, der mit diesem Thema promoviert. Seine Arbeiten werden vom Sonderforschungsbereich 762 "Funktionalität Oxidischer Grenzflächen" finanziert und er ist Mitglied in der Leipzig Graduate School of Natural Sciences - Building with Molecules and Nano-objects (BuildMoNa), die im Exzellenzwettbewerb des Bundes und der Länder gefördert wird. Seine Entwicklung des TMESFET wird nun in die interdisziplinären Arbeiten der Graduiertenschule einfließen.

Mit ihrer Entwicklung treten die Leipziger Wissenschaftler in die Fußstapfen großer Vorgänger. Vor fast 135 Jahren entdeckte Ferdinand Braun 1874 in Leipzig die Gleichrichtung. Er untersuchte leitende Kontakte von Silber auf Kupferkies, einem Mineral, das Chalcopyrit, im Volksmund auch Katzengold genannt wird. Braun fand heraus, dass bei der doppelten angelegten Spannung nicht der doppelte Strom fließt sondern weniger. Dieses Verhalten war unerwartet und wird heute als Betrieb einer Diode in Sperrrichtung bezeichnet. Eine Halbleitertechnik auf der Basis von Kupferkies hat sich zwar nicht etabliert. Allerdings spielt die Verbindung Kupferindiumselenid, die ebenfalls eine Chalcopyrit-Kristallstruktur besitzt, eine wichtige Rolle in der Photovoltaik als Absorber bei Dünnschicht-Solarzellen, wie sie zum Beispiel von der Solarion AG in Leipzig in Zusammenarbeit mit dem Leibniz-Institut für Oberflächenmodifizierung und der Universität Leipzig hergestellt werden.

Anfang des 20. Jahrhunderts arbeitete der Physiker Julius Edgar Lilienfeld an der Universität Leipzig an vielerlei Problemen wie der Gasverflüssigung für die Luftschifffahrt, Röntgenröhren für therapeutische Zwecke und der Feldemission. Er entwickelte die weltweit ersten Konzepte zum Feldeffekt-Transistor, dem Bauelement, auf dem heute nahezu die gesamte Mikroelektronik beruht und das in modernen Computern in milliardenfacher Anzahl arbeitet. Die von Lilienfeld in Amerika angemeldeten Patente waren ihrer Zeit weit voraus. Mit dem damaligen Stand des Wissens um Halbleitermaterialien und der damaligen Halbleitertechnologie konnten die vorgeschlagenen Bauelemente nicht realisieren werden. Im US-Patent 1745175 beschreibt er 1925 eine Anordnung mit zwei Elektroden S (source) und D (drain) auf einem leitfähigen Material, er nennt Kupfersulfid als Beispiel, zwischen denen ein Stromfluss stattfindet. Eine dritte Elektrode G (gate) zwischen S und D dient quasi als elektrisches Ventil und kann den Stromfluss unterbinden.

Auch das von Lilienfeld vorgeschlagene Kupfersulfid hat in der Halbleitertechnologie keine Bedeutung errungen. Die heutige Mikroelektronik basiert fast ausschließlich auf dem Halbleiter Silizium. Dies gilt nicht nur für Prozessoren und Speicherbausteine sondern auch für Bildsensoren in Digitalkameras und Handys sowie weit über 90 Prozent der in der Photovoltaik eingesetzten Solarzellen. Für die Nutzung des Siliziums in dieser Weise ist die Tatsache wichtig, dass es Licht im sichtbaren Spektralbereich absorbiert und damit undurchsichtig ist.

Die von Lilienfeld beschriebene Anordnung wird heutzutage als Metall-Halbleiter Feldeffekt-Transistor, kurz MESFET, bezeichnet. Der Metall-Halbleiter Übergang der Steuer-Elektrode G ist ein gleichrichtender Kontakt wie ihn Braun beschrieben hat. Allerdings wurden die Eigenschaften in der Zwischenzeit drastisch verbessert. War der Effekt der Gleichrichtung bei Braun nur ein Faktor 2, wird heute ein Faktor von 108, das heißt hundert Millionen für das Gleichrichtungsverhältnis (Quotient von Vorwärtsstrom und Rückwärtsstrom bei Betriebsspannung) erreicht. Festzustellen bleibt aber: Die Wiege der Elektronik stand in Leipzig.

Weitere Informationen:
Prof. Dr. Marius Grundmann
Telefon: 0341 97-32650
E-Mail: grundmann@physik.uni-leipzig.de

Tobias D. Höhn | idw
Weitere Informationen:
http://www.uni-leipzig.de/~hlp

Weitere Berichte zu: MESFET Stromfluss Transistor

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Magnetische Sensoren ermöglichen richtungsabhängige Temperaturmessung
19.10.2018 | Universität Greifswald

nachricht Mission BepiColombo: Jenaer Sensor hilft, Geheimnisse des Merkur zu entschlüsseln
19.10.2018 | Leibniz-Institut für Photonische Technologien e. V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics