Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Dilemma des Abreißens

14.05.2008
Jeder kennt dieses Phänomen: versucht man einen Klebestreifen von einer Fläche abzuziehen, hat man letztendlich nur ein spitzzulaufendes Stück in den Händen, obwohl doch alles abgerissen werden sollte.

Eine internationale Forschergruppe, u.a. Forscher des französischen Zentrums für wissenschaftliche Forschung (CNRS) und der Hochschule für industrielle Physik und Chemie (ESPCI), konnte nun dieses Phänomen begründen. Diese Ergebnisse könnten zu neuen Erkenntnissen über verschiedene mechanische Eigenschaften von ultradünnen, industriell genutzten Klebestreifen führen und zur Vorbereitung entsprechender Tests dienen.

Die Fragestellung lautete also: warum zerreißt der Streifen nur spitzförmig, obwohl man doch versucht, alles abzureißen? Worin liegt diese bestimmte Form begründet?

Gemeinsam mit chilenischen und amerikanischen Kollegen hat Benoît Roman des Labors für Physik und Mechanik der heterogenen Systeme (CNRS/ESPCI/Universitäten Paris 6 und 7) dieses Problem theoretisch und praktisch analysiert. Die Gruppe hat hierfür ein System entwickelt, mit dem es möglich war, einen Klebestreifen kontrolliert abzureißen. Dieser Streifen wird auf ein Trägermaterial geklebt und zwei Risse in ihm erzeugt.

... mehr zu:
»Abreißens »Physik

Anschließend zieht die Einrichtung mit konstanter Geschwindigkeit an dem Klebefilm. Die Forscher speichern die Formen des Streifens ab und messen die mechanischen Kräfte der Filme mit unterschiedlichen Eigenschaften (Haftfestigkeit, mechanische Eigenschaften).

Faltet man einen Streifen (siehe Abbildung) nachdem zwei Risse erzeugt wurden, speichert er elastische Energie (er kehrt zu seiner Ausgangsposition zurück, wenn man ihn loslässt). Das System neigt dann dazu, diese Energie zu zerstreuen, indem es schmaler wird. Die Risse werden dabei von den Zonen angezogen, die der stärksten Belastung unterliegen (die Stellen, an denen die elastische Energie am größten ist). In diesem Falle handelt es sich um die Zone des Films, die sich zwischen den beiden Rissen befindet. Sie werden aus diesem Grund unmittelbar voneinander angezogen und verursachen so die allmähliche Verkleinerung des Streifens.

Nach Analyse dieser Beobachtungen haben die Physiker gezeigt, dass die Streifen dreieckig sind und das der Winkel des Dreiecks von drei charakteristischen Eigenschaften des anhaftenden Materials abhängt: Haftfestigkeit, Flexibilität und Bruchfestigkeit. Sie haben eine Formel entwickelt, mit der sie eine dieser Eigenschaften, in Abhängigkeit von den beiden anderen und bei Angabe des Winkels, bestimmen können.

Werkstoffingenieure könnten diese Ergebnisse in der Industrie anwenden, vor allem um eine der drei Eigenschaften zu berechnen, wenn zwei bereits bekannt sind. Besonders nützlich könnte es für die Charakterisierung von ultradünnen und daher schwer zu manipulierenden Filmen sein, die die Basis für Mikro- oder Nanosysteme darstellen.

Bereits heute finden wir in unserem Alltag diese Filme wieder, beispielsweise in Schockdetektoren von Airbags oder in den Mikrospiegeln der neuen Generation von Videoprojektoren.

Kontakt:
Benoît Roman
@ benoit@pmmh.espci.fr
+33 1 40 79 47 21
+33 1 40 79 51 07
http://www.espci.fr
Muriel Ilous
@ muriel.ilous@cnrs-dir.fr
+33 1 44 96 43 09
http://www.cnrs.fr
Quelle: Le "dilemme du papier peint" expliqué par les physiciens, 30.04.2005
Redakteurin: Nadia Heshmati, nadia.heshmati@diplomatie.gouv.fr
Wissenschaft-Frankreich (Nummer 141 vom 14.05.08)
Französische Botschaften in Deutschland und Österreich
Kostenloses Abonnement durch E-Mail : sciencetech@botschaft-frankreich.de

| Wissenschaft Frankreich
Weitere Informationen:
http://www.wissenschaft-frankreich.de/allemand

Weitere Berichte zu: Abreißens Physik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultraschneller Blick in die Photochemie der Atmosphäre
11.10.2019 | Max-Planck-Institut für Quantenoptik

nachricht Wie entstehen die stärksten Magnete des Universums?
10.10.2019 | Universität Heidelberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Wenn die Erde flüssig wäre

Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“

10.10.2019 | Veranstaltungen

Aktuelle Trends an den Finanzmärkten im Schnelldurchlauf

09.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IZM setzt das E-Auto auf die Überholspur

11.10.2019 | Energie und Elektrotechnik

IVAM-Produktmarkt auf der COMPAMED 2019: Keine Digitalisierung in der Medizintechnik ohne Mikrotechnologien

11.10.2019 | Messenachrichten

Kryptografie für das Auto der Zukunft

11.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics