Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wieviel Kraft braucht man, um ein einzelnes Atom zu bewegen?

25.02.2008
Wissenschaftler aus San Jose, Kalifornien, und Regensburg messen erstmals die Kraft, die zur Herstellung kleinster Strukturen aus einzelnen Atomen nötig ist. Die Messung der treibenden Kräfte der Nano-Manufaktur ist wichtig für die Informationstechnologie.

Wissenschaftlern der International Business Machines Corporation (IBM) und der Universität Regensburg ist es erstmals gelungen, die winzigen Kräfte zu messen, die bei der Konstruktion der kleinstmöglichen künstlichen Strukturen aus einzelnen Atomen wirken (M. Ternes, C. P. Lutz, C. F. Hirjibehedin, F. J. Giessibl, A. J. Heinrich, Science 319, 1066 (2008)). Diese fundamentalen Messungen sind wichtig für die Identifizierung der geeigneten chemischen Elemente künftiger Schaltelemente mit atomaren Dimensionen: Computerchips, Speicherelemente und andere.

Vor etwa zwanzig Jahren hat Don Eigler, IBM Fellow am Almaden Research Center in San Jose, in einem kleinen Labor, vollgestopft mit technischen Geräten, auf den Hügeln über dem Silicon Valley einen gewaltigen Durchbruch erzielt - die gezielte Anordnung von Atomen, die die kleinsten stabilen Materieteilchen darstellen. Don Eigler und sein Mitarbeiter Erhard Schweizer schrieben I-B-M mit Buchstaben aus einzelnen Atomen des Edelgases Xenon.

Nun konnten Mitarbeiter des gleichen Labors in Kooperation mit der Universität Regensburg die winzigen Kräfte messen, die beim Verschieben der einzelnen Atome wirken. Die Ergebnisse der Studie sind in einem heute (22.2.2008) erscheinenden Artikel des Journals Science publiziert worden.

... mehr zu:
»Atom »Transistor

Das Verständnis der Kräfte, die beim Anordnen einzelner Atome auf Oberflächen wirken, ist grundlegend für die Planung und den Bau jeglicher Konstrukte atomarer Dimensionen. Zum Beispiel braucht man für den Bau eines Motors auf der Nanoskala lose gebundene Atome für bewegliche Teile wie Zahnräder, Hebel und Schalter. Für ein stabiles Gehäuse dagegen wäre es wichtig, Atome zu finden, die fester an der Oberfläche haften und nicht so leicht verschoben werden können.

Das Problem ähnelt den Hürden, die Wissenschaftler und Ingenieure bei der Konstruktion und beim Bau makroskopischer Gebilde überwinden mussten. Es wäre unmöglich, eine moderne Brücke zu bauen ohne eine genaue Kenntnis der Stärke der verwendeten Baustoffe, der wirkenden Kräfte und der gegenseitigen Wechselwirkungen.

"Dieses Resultat zeigt den Weg zu neuen Datenspeicherelementen und wird auch das Verständnis biologischer Strukturen und molekularer Wechselwirkungen verbessern", sagt Gian-Luca Bona, Senior Manager des Bereichs Science & Technology am IBM Almaden Research Center.

In der Veröffentlichung "The Force Needed to Move an Atom on a Surface," zeigen die Wissenschaftler, dass eine Kraft von 210 Piconewton nötig ist, um ein Kobaltatom über eine glatte Platinoberfläche zu bewegen, während sich ein Kobaltatom auf einer Kupferoberfläche schon mit einer Kraft von 17 Piconewton bewegen lässt. Zum Vergleich: Um einen Euro-Cent mit einer Masse von etwa 3 Gramm auf einer Oberfläche zu bewegen, muss eine Kraft von etwa 30 Milliarden Piconewton aufgewendet werden.

Dieses Wissen gewährt ein tieferes Verständnis der Prozesse, die die Grundlage der Nanotechnologie bilden und unterstützt den industriellen Fortschritt auf Gebieten wie der Medizin und der Informationstechnik auf der Nanoskala.

Der wohlbekannte Trend in der Computertechnik - die exponentiell steigende Zahl von Transistoren die auf einer integrierten Schaltung Platz finden - ist allgemein als Moore'sches Gesetz bekannt. Die Verkleinerung der Transistoren verringert den Energieverbrauch und die Kosten bei gleichzeitiger Erhöhung von Geschwindigkeit und Zuverlässigkeit. Die Entwicklung neuer Methoden zur Herstellung kleinster Schaltkreise ist die dringlichste Herausforderung der Computerindustrie.

Wenn man diese Schaltkreise auf die kleinstmögliche Größe bringen könnte - nur einige Atome - könnte man völlig neue Entwürfe und Herstellverfahren ermöglichen. Genau dort füllt die Kenntnis der Kräfte, die bei der atomaren Manipulation wirken, eine bedeutende Wissenslücke: das Verstehen und Steuern des Baus von Nanostrukturen - Atom für Atom.

Wieviel Kraft ist nötig, um ein einzelnes Atom zu bewegen?

Vor einem halben Jahrhundert fragte der Nobelpreisträger Richard Feynman in seinem denkwürdigen Vortrag "There is plenty of room at the bottom", welche Möglichkeiten sich eröffnen würden, wenn man einzelne Atome nach Belieben anordnen könnte. Dieser Traum ist heute Realität, und heute wird atomare Manipulation auf breiter Front in der Wissenschaft angewendet um atomare Strukturen zu bauen, zu verändern und zu vermessen. Die fundamentale Frage: "Welche Kraft brauchen wir, um ein Atom zu verschieben" blieb dagegen bis heute der experimentellen Erforschung verschlossen.

Im heute publizierten Artikel beschreiben die Wissenschaftler den Einsatz eines empfindlichen Rasterkraftmikroskops, um sowohl die Stärke als auch die Richtung der Kraft zu messen, die eine scharfe Spitze beim Verschieben eines Atoms darauf ausübt. Das Team fand heraus, dass die Kraft stark von der chemischen Identität des Atoms und der Unterlage abhängt. Für ein kleines Molekül ergibt sich eine ganz andere Kraft als für ein Metallatom.

Das Kraftmikroskop wurde vor mehr als 20 Jahren von Nobelpreisträger und IBM Fellow Gerd Binnig, IBM Mitarbeiter Christoph Gerber und Stanford-Professor Calvin Quate eingeführt und wurde bereits zur Messung atomarer Kräfte eingesetzt, aber noch nie mit einer derart hohen Präzision. "Es ist erstaunlich, dass die winzigen Kräfte die beim Verschieben der Atome wirken mit einem Kraftsensor gemessen werden können, der im Wesentlichen auf der Quarzstimmgabel beruht, die in jeder handelsüblichen Quarzuhr schwingt", sagt Professor Franz Gießibl von der Universität Regensburg, der Erfinder des Stimmgabel-Kraftsensors.

Kontakt:
Jenny Hunter
IBM Media Relations (Americas)
510-919-5320
jennyh@us.ibm.com
Prof. Dr. Franz J. Gießibl,
Institut für Experimentelle und Angewandte Physik
Universität Regensburg
Universitätsstrasse 31
D-93040 Regensburg
Telefon: 0941 943-2105, Fax: 0941 943-2754
Email: franz.giessibl@physik.uni-regensburg.de

Rudolf F. Dietze | idw
Weitere Informationen:
http://www.uni-regensburg.de/
http://www.nytimes.com/2008/02/22/science/22atom.html?_r=1&oref=slogin

Weitere Berichte zu: Atom Transistor

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik
20.07.2018 | Technische Universität Berlin

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics