Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Als es nach dem Urknall hell wurde: Kompakte Galaxie haben das frühe Universum aufgeheizt

14.01.2016

Wie ist das dunkle Zeitalter des Kosmos kurz nach dem Urknall zuende gegangen? Sogenannte "green pea"-Galaxien, die intensive UV-Strahlung produzieren, werden als mögliche Erklärung gehandelt. Jetzt haben Forscher eine dieser Galaxien eingehend untersucht und nachgewiesen, dass sie in der Tat genug UV-Strahlung in den umgebenden Raum abstrahlt, um die kosmische Reionisierung zu erklären: jene Übergangsphase ab rund 150 Millionen Jahren nach dem Urknall, bei dem der Großteil des intergalaktischen Wasserstoffs in Elektronen und Protonen zerlegt wurde. Das Forschungsergebnis wurde in der Ausgabe vom 14. Januar 2016 der Fachzeitschrift Nature veröffentlicht.

Nach der Urknallphase vor rund 13,8 Milliarden Jahren kühlte sich das Universum rapide ab, und im Laufe von weniger als einer Million Jahren wurde der Kosmos komplett dunkel. Der Übergang von diesem "Dunklen Zeitalter" zur Entstehung der ersten Sterne und Galaxien ist eine der am wenigsten verstandenen Epochen kosmischer Geschichte.


Die "Grüne-Erbsen-Galaxie" J0925+1403, aufgenommen mit dem Weltraumteleskop Hubble. Es handelt sich um ein geglättetes Falschfarbenbild, aufgenommen im nahen UV-Bereich (HST/COS zentriert um die Wellenlänge 230 nm), grün eingefärbt um dem Erscheinungsbild zu ähneln, welches Grüne-Erbsen-Galaxien bei Aufnahmen im sichtbaren Licht haben.

Mit einem Durchmesser von nur rund 6000 Lichtjahren ist diese Galaxie weniger als 1/15 so groß wie unsere Milchstraße (genauer: deren sichtbare Anteile). Astronomen haben jetzt gemessen, dass rund 8% der UV-Strahlung, die diese Galaxie produziert, in den umgebenden Weltraum abstrahlen. Das reicht dafür aus, dass Galaxien dieses Typs die Schlüsselrolle bei der Reionisierung des Kosmos kurz nach dem Urknall hätten spielen können.

Bild: Ivana Orlitová, Astronomisches Institut der Tschechischen Akademie der Wissenschaften, Prag

Jetzt hat eine Gruppe von Astronomen, zu der auch Gabor Worseck vom Max-Planck-Institut für Astronomie gehört, nachgewiesen, dass "Green Pea"-Galaxien (wörtlich "grüne Erbsen") die richtigen Eigenschaften besitzen, um bei diesem Übergang eine Schlüsselrolle gespielt zu haben. Green Peas, so benannt nach ihrem typischen Erscheinungsbild in astronomischen Aufnahmen, sind hochkompakte Galaxien niedriger Masse, die große Mengen neuer Sterne bilden.

Green Peas könnten wesentlich für die Reionisierung des Universums ab ca. 150 Millionen Jahren nach dem Urknall verantwortlich sein. Damals wurde der Großteil des Wasserstoffs im frühen Universum ionisiert, also in Protonen und Elektronen aufgespalten. Galaxien mit hoher Sternentstehungsrate wie die Green Peas bilden beträchtliche Mengen an massereichen Sternen, und diese wiederum leuchten im UV-Bereich so hell, dass sie Wasserstoff ionisieren können.

Allerdings hatte bislang niemals zeigen können, dass von Galaxien dieses Typs ausreichende Mengen an hochenergetischer Strahlung ausgehen. Im Gegenteil hatten alle bisherigen Beobachtungen Galaxien erfasst, bei denen der Großteil der UV-Strahlung innerhalb der Galaxie absorbiert wird ohne dass genügend Strahlung übrig bliebe, um nennenswerte Mengen intergalaktischen Wasserstoffs zu ionisieren.

Zudem war klar: Wenn es doch Exemplare der Green Peas gab, aus denen größere Strahlungsmengen nach außen drangen, würden sie nur in unserer kosmischen Nachbarschaft nachweisbar sein. Für deutlich weiter entfernte Galaxien würde die UV-Strahlung vom intergalaktischen Wasserstoff absorbiert, bevor sie die Erde erreicht.

Daher setzten sich die Forscher unter der Leitung von Juri Izotov von der Akademie der Wissenschaften der Ukraine daran, in unserer kosmischen Umgebung stark strahlende Green Peas zu finden. Um vielversprechende Kandidaten auszuwählen bedienten sie sich des Sloan Digital Sky Survey (SDSS). Die fünf besten Kandidaten wurden dann mit dem Hubble-Weltraumteleskop genauer untersucht.

Hier kam Gabor Worseck ins Spiel, ein Postdoktorand am Max-Planck-Institut für Astronomie. Worseck sagt: "Ich habe über die letzten Jahre hinweg eine besondere Methode entwickelt, um Spektraldaten des Hubble-Teleskops zu analysieren, die für diese Messungen wie maßgeschneidert ist. So konnten wir dann ganz genau bestimmen, wieviel UV-Strahlung die fünf Green Pea-Galaxien aussenden."

Eine der Kandidatengalaxien, mit der Bezeichnung J0925+1403, erwies sich als besonders wirkmächtig: ganze 8% ihrer UV-Strahlung entkommt aus der Galaxie in den intergalaktischen Raum und würde ausreichen, dort Wasserstoffgas mit dem mehr als 40fachen der Gesamtmasse der Galaxie zu ionisieren. Damit dürften Green Peas in der Tat in der Lage gewesen sein, die kosmische Reionisierung zu bewerkstelligen. Damit wird plausibel, dass tatsächlich die damaligen Green Peas verantwortlich gewesen sein könnten, dass das Dunkle Zeitalter kurz nach dem Big Bang ein Ende fand.

Hintergrundinformationen
Die hier beschriebenen Ergebnisse sind veröffentlicht als Y. I. Izotov et al., "Lyman continuum leaking from the compact star-forming dwarf galaxy J0925+1403" in der Ausgabe vom 14. Januar 2016 der Fachzeitschrift Nature. Medienvertreter, die Zugang zum Originalartikel erhalten möchten, wenden sich bitte an r.walton@nature.com

Weitere Informationen:

http://www.mpia.de/news/wissenschaft/2016-02-dunkles-zeitalter - Online-Version der Mitteilung

Dr. Markus Pössel | Max-Planck-Institut für Astronomie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuer Quantenzustand nachgewiesen
31.03.2020 | Technische Universität Braunschweig

nachricht Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation
30.03.2020 | Leibniz Universität Hannover

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Corona-Pandemie: Medizinischer Vollgesichtsschutz aus dem 3D-Drucker

In Vorbereitung auf zu erwartende COVID-19-Patienten wappnet sich das Universitätsklinikum Augsburg mit der Beschaffung von persönlicher Schutzausrüstung für das medizinische Personal. Ein Vollgesichtsschutz entfaltet dabei in manchen Situationen eine bessere Schutzwirkung als eine einfache Schutzbrille, doch genau dieser ist im Moment schwer zu beschaffen. Abhilfe schafft eine Kooperation mit dem Institut für Materials Resource Management (MRM) der Universität Augsburg, das seine Kompetenz und Ausstattung im Bereich des 3D-Drucks einbringt, um diesen Engpass zu beheben.

Das Coronavirus SARS-CoV-2 wird nach heutigem Wissensstand maßgeblich durch Tröpfcheninfektion übertragen. Dabei sind neben Mund und Nase vor allem auch die...

Im Focus: Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation

Ein internationales Team unter Beteiligung von Prof. Dr. Michael Kues vom Exzellenzcluster PhoenixD der Leibniz Universität Hannover hat eine neue Methode zur Erzeugung quantenverschränkter Photonen in einem zuvor nicht zugänglichen Spektralbereich des Lichts entwickelt. Die Entdeckung kann die Verschlüsselung von satellitengestützter Kommunikation künftig viel sicherer machen.

Ein 15-köpfiges Forscherteam aus Großbritannien, Deutschland und Japan hat eine neue Methode zur Erzeugung und zum Nachweis quantenverstärkter Photonen bei...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Nachwuchswissenschaftler der Universität Rostock erfinden einen Trichter für Lichtteilchen

Physiker der Arbeitsgruppe von Professor Alexander Szameit an der Universität Rostock ist es in Zusammenarbeit mit Kollegen von der Universität Würzburg gelungen, einen „Trichter für Licht“ zu entwickeln, der bisher nicht geahnte Möglichkeiten zur Entwicklung von hypersensiblen Sensoren und neuen Technologien in der Informations- und Kommunikationstechnologie eröffnet. Die Forschungsergebnisse wurden jüngst im renommierten Fachblatt Science veröffentlicht.

Der Rostocker Physikprofessor Alexander Szameit befasst sich seit seinem Studium mit den quantenoptischen Eigenschaften von Licht und seiner Wechselwirkung mit...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

Wichtigste internationale Konferenz zu Learning Analytics findet statt – komplett online

23.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Corona-Pandemie: Medizinischer Vollgesichtsschutz aus dem 3D-Drucker

31.03.2020 | Medizin Gesundheit

Jade Hochschule entwickelt Messverfahren zur Prüfung von Schweißnähten unter Wasser

31.03.2020 | Verfahrenstechnologie

Phagen-Kapsid gegen Influenza: Passgenauer Inhibitor verhindert virale Infektion

31.03.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics