3-D-Röntgenbild macht feinste Details eines Computerchips sichtbar

3-D-Darstellung der inneren Struktur eines Mikrochips (Prozessor der Firma Intel). Gezeigt ist der Blick direkt auf die Ebene, in der sich die Transistoren befinden. Foto: Paul Scherrer Institut/Mirko Holler

Die Stromleitungen in vielen der elektronischen Chips unserer Computer und Mobiltelefone sind nur 45 Nanometer breit, die Transistoren 34 Nanometer hoch. Während es heute Standard ist, so feine Strukturen herzustellen, ist es immer noch eine Herausforderung, den genauen Aufbau eines solchen fertigen Chips im Detail zu vermessen, um beispielsweise zu prüfen, ob er den Vorgaben entsprechend aufgebaut ist.

Heutzutage nutzen Chip-Hersteller für solche Untersuchungen vor allem ein Verfahren, bei dem man den Chip Schicht für Schicht abträgt und dann nach jedem Schritt die Oberfläche mit einem Elektronenmikroskop untersucht; dieses ist als FIB/SEM – Focused Ion Beam/Scanning Electron Microscope – bekannt.

Jetzt haben Forschende des Paul Scherrer Instituts PSI die Strukturen in einem Chip zerstörungsfrei in 3-D mittels Röntgenstrahlen abgebildet, sodass der Verlauf der Stromleitungen und die Position der einzelnen Transistoren und anderer Schaltelemente deutlich sichtbar wurden.

„Die Bildauflösung, die wir hier erzeugen konnten, ist ähnlich hoch wie bei dem konventionellen Untersuchungsverfahren FIB/SEM“, erklärt Mirko Holler, Leiter des Projekts. „Dafür konnten wir zwei wesentliche Nachteile vermeiden: Erstens blieb bei uns die Probe unbeschädigt und wir haben die vollständige Information über die dreidimensionale Struktur. Zweitens vermeiden wir Verzerrungen der Bilder, die bei FIB/SEM entstehen, wenn die Oberfläche der einzelnen Schnitte nicht genau plan ist.“

Nanometergenau positioniert

Für ihre Untersuchungen haben die Forschenden ein besonderes Tomografieverfahren (Ptychotomografie) genutzt, das sie im Laufe der letzten Jahre entwickelt und immer weiter verfeinert haben und das heute die weltweit beste Auflösung von 15 Nanometern (15 millionstel Millimeter) bei vergleichsweise grossem untersuchtem Volumen bietet.

Bei dem Experiment wird das Untersuchungsobjekt an genau festgelegten Stellen mit Röntgenlicht aus der Synchrotron Lichtquelle Schweiz SLS des Paul Scherrer Instituts durchleuchtet – ein Detektor misst dann jeweils die Eigenschaften des Lichts nach dem Durchgang durch die Probe. Die Probe wird dann in kleinen Schritten gedreht und nach jedem Drehschritt wieder schrittweise durchleuchtet.

Aus der Gesamtheit der gewonnenen Daten lässt sich die dreidimensionale Struktur der Probe bestimmen. „Bei diesen Messungen muss man die Position der Probe auf wenige Nanometer genau kennen – das war eine der besonderen Herausforderungen beim Aufbau unseres Experimentierplatzes“, so Holler.

In ihrem Experiment haben die Forschenden kleine Stücke von zwei Chips untersucht – einem am PSI entwickelten Detektorchip und einem handelsüblichen Computerchip. Die Stücke waren jeweils rund 10 Mikrometer (also 10 tausendstel Millimeter) gross. Während die Untersuchung eines vollständigen Chips mit dem gegenwärtigen Messaufbau nicht möglich ist, sind die Vorteile des Verfahrens in dieser Form schon zum Tragen gekommen, sodass sich bereits die ersten Interessenten gemeldet haben, die am PSI Messungen durchführen möchten.

Ziel: ganze Mikrochips untersuchen

„Wir beginnen gerade, die Methode so weiterzuentwickeln, dass man damit in akzeptabler Messzeit ganze Mikrochips untersuchen kann. Dann wird es auch möglich werden, denselben Bereich eines Chips mehrfach zu untersuchen und damit zum Beispiel zu beobachten, wie er sich durch äussere Einflüsse verändert“, erklärt Gabriel Aeppli, Leiter des Forschungsbereichs Synchrotronstrahlung und Nanotechnologie am PSI.

Text: Paul Scherrer Institut/Paul Piwnicki

Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 2000 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 370 Mio. Das PSI ist Teil des ETH-Bereichs, dem auch die ETH Zürich und die ETH Lausanne angehören sowie die Forschungsinstitute Eawag, Empa und WSL.

Kontakt/Ansprechpartner:
Dr. Mirko Holler
Labor für Makromoleküle und Bioimaging, Forschungsbereich Synchrotronstrahlung
und Nanotechnologie
Paul Scherrer Institut, 5232 Villigen PSI, Schweiz
Telefon: +41 56 310 36 13, E-Mail: mirko.holler@psi.ch

Originalveröffentlichung:
High-resolution non-destructive three-dimensional imaging of integrated circuits
Mirko Holler, Manuel Guizar-Sicairos, Esther H. R. Tsai, Roberto Dinapoli, Elisabeth Müller, Oliver Bunk, Jörg Raabe, Gabriel Aeppli
Nature 16 March 2017

http://psi.ch/6abJ – Darstellung der Mitteilung auf der Webseite des PSI mit weiteren Abbildungen, ausführlicheren Bildlegenden und einem Kurzfilm
http://psi.ch/MSmG – Ausführlicherer Artikel zu der verwendeten Methode

Media Contact

Dagmar Baroke idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer