Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

UKE-Wissenschaftler testen Prototyp für neue Bildgebungsmethode

26.10.2012
Magnetic Particle Imaging sorgt für gestochen scharfe Bilder

Am Universitätsklinikum Hamburg-Eppendorf (UKE) wird demnächst ein neues strahlenfreies Bildgebungsverfahren getestet: Das Magnetic Particle Imaging (MPI) liefert hochauflösende 3-D-Bilder.

Um die Forschung auf diesem Gebiet weiter voran zu treiben, fördert die Deutsche Forschungs-Gemeinschaft (DFG) den Test zweier Prototypen – eins dieser Großgeräte steht künftig am UKE. Zusätzlich fördert die DFG das Forschungsvorhaben mit knapp 4 Mio. Euro.

MPI funktioniert grundsätzlich anders als die bisherigen Verfahren der dreidimensionalen Bildgebung: Bei diesen wird die Resonanz des körpereigenen Gewebes auf ein eingesetztes Kontrastmittel abgebildet, bei MPI wird die räumliche Verteilung der eingesetzten Substanzen dargestellt. Die Bildgebung erfolgt beim MPI über Magnetfelder, die durch im Körper zirkulierende Nanopartikel aus Eisenoxid aufgebaut werden.

Während das Bild, das beispielsweise bei der Magnetresonanztherapie entsteht, die Reaktionen des Gewebes auf das Kontrastmittel abbildet, werden beim MPI ganz konkret nur die Signale der Eisenpartikel gemessen, ohne das umliegende Gewebe. „Auf diese Weise erhalten wir präzise anatomische Informationen ohne störendes Hintergrundsignal.

Bei Gefäßen können wir wahrscheinlich das Durchflussvolumen genau bestimmen und somit konkrete Aussagen über Verengungen treffen“, sagt Prof. Gerhard Adam, Ärztlicher Leiter der Klinik für Diagnostische und Interventionelle Radiologie am UKE.

Ab Herbst 2013 werden er und sein Team, dem zahlreiche Forscher aus anderen UKE-Instituten und -Kliniken, dem Heinrich-Pette-Institut, dem Institut für Physikalische Chemie der Universität Hamburg und dem Bernhard-Nocht-Institut angehören, diese Annahmen mit Hilfe des MPI-Prototyps an Mäusen testen.

Seine Hoffnung ist, dass sich mittels der MPI-Diagnose z.B. Herzerkrankungen schneller, genauer und für den Patienten schonender diagnostizieren lassen. Durch die hohe Sensitivität der Methode sieht er zudem große Möglichkeiten für die Diagnose von Tumorerkrankungen: „Wir denken, dass wir durch das MPI einen Tumor früher und noch genauer lokalisieren können“, sagt Prof. Adam.

Mit Hilfe der Prototypen der MPI-Scanner sollen sowohl Grundlagenfragen untersucht als auch Möglichkeiten für klinische Anwendungen erprobt werden. Die Entwicklung von geeigneten Nanopartikeln wird ebenfalls ein Forschungsschwerpunkt sein. Die DFG möchte mit ihrer Initiative deutschen Wissenschaftlerinnen und Wissenschaftlern möglichst schnell den Zugang zu dieser neuen Technologie ermöglichen. „Die bislang nur in Ansätzen erkennbaren Möglichkeiten der MPI-Methode sollen exploriert und in den relevanten Forschungsfeldern angewendet werden“ hieß es in den Ausschreibungsinformationen der DFG.

Christine Jähn | idw
Weitere Informationen:
http://www.uke.uni-hamburg.de

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Marburger Forscherinnen und Forscher entwickeln einfaches Beatmungsgerät
25.03.2020 | Philipps-Universität Marburg

nachricht Fast Protect Malleo setzt neue Maßstäbe speziell in der Sekundärprävention eines Supinationstraumas
20.03.2020 | sportomedix by Juzo - Julius Zorn GmbH

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nachwuchswissenschaftler der Universität Rostock erfinden einen Trichter für Lichtteilchen

Physiker der Arbeitsgruppe von Professor Alexander Szameit an der Universität Rostock ist es in Zusammenarbeit mit Kollegen von der Universität Würzburg gelungen, einen „Trichter für Licht“ zu entwickeln, der bisher nicht geahnte Möglichkeiten zur Entwicklung von hypersensiblen Sensoren und neuen Technologien in der Informations- und Kommunikationstechnologie eröffnet. Die Forschungsergebnisse wurden jüngst im renommierten Fachblatt Science veröffentlicht.

Der Rostocker Physikprofessor Alexander Szameit befasst sich seit seinem Studium mit den quantenoptischen Eigenschaften von Licht und seiner Wechselwirkung mit...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Künstliche Intelligenz findet das optimale Werkstoffrezept

Die möglichen Eigenschaften nanostrukturierter Schichten sind zahllos – wie aber ohne langes Experimentieren die optimale finden? Ein Team der Materialforschung der Ruhr-Universität Bochum (RUB) hat eine Abkürzung ausprobiert: Mit einem Machine-Learning-Algorithmus konnten die Forscher die strukturellen Eigenschaften einer solchen Schicht zuverlässig vorhersagen. Sie berichten in der neuen Fachzeitschrift „Communications Materials“ vom 26. März 2020.

Porös oder dicht, Säulen oder Fasern

Im Focus: Erdbeben auf Island über Telefonglasfaserkabel registriert

Am 12. März 2020, 10.26 Uhr, ereignete sich in Südwestisland, ca. 5 km nordöstlich von Grindavík, ein Erdbeben mit einer Magnitude von 4.7, während eines längeren Erdbebenschwarms. Wissenschaftlerinnen und Wissenschaftler des Deutschen GeoForschungsZentrums GFZ haben jetzt dort ein neues Verfahren zur Überwachung des Untergrunds mithilfe von Telefonglasfaserkabeln getestet.

Ein von GFZ-Forschenden aus den Sektionen „Oberflächennahe Geophysik“ und „Geoenergie“ durchgeführtes Online-Monitoring, das Glasfaserkabel des isländischen...

Im Focus: Quantenoptiker zwingen Lichtteilchen, sich wie Elektronen zu verhalten

Auf der Basis theoretischer Überlegungen von Physikern der Universität Greifswald ist es Mitarbeitern der AG Festkörperoptik um Professor Alexander Szameit an der Universität Rostock gelungen, photonische topologische Isolatoren als Lichtwellenleiter zu realisieren, in denen sich Photonen wie Elektronen verhalten, und somit fermionische Eigenschaften zeigen. Ihre Entdeckung wurde jüngst im renommierten Fachblatt „Nature Materials“ veröffentlicht.

Dass es elektronische topologische Isolatoren gibt – Festkörper die im Innern den elektrischen Strom nicht leiten, dafür aber umso besser über die Oberfläche –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

Wichtigste internationale Konferenz zu Learning Analytics findet statt – komplett online

23.03.2020 | Veranstaltungen

UN World Water Day 22 March: Water and climate change - How cities and their inhabitants can counter the consequences

17.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltweit einzigartig: Neue Anlage zur Untersuchung von biogener Schwefelsäurekorrosion in Betrieb

27.03.2020 | Architektur Bauwesen

Schutzmasken aus dem 3D-Drucker

27.03.2020 | Materialwissenschaften

Nachwuchswissenschaftler der Universität Rostock erfinden einen Trichter für Lichtteilchen

27.03.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics