Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Innovative Lasertechnik zur Behandlung des Grünen Stars

15.09.2017

TH Nürnberg erprobt eine neue Strahlquelle zur präzisen und kostengünstigen Behandlung des Glaukoms

Das Forschungsteam um Prof. Dr. Bernd Braun und Prof. Dr. Manfred Kottcke im Laserlabor der TH Nürnberg beschäftigt sich mit der Verwendung eines neuartigen Ultrakurzpulslasers für Operationen im Bereich der Augenheilkunde.


Das Auge

©vicu9 - stock.adobe.com

In Kooperation mit dem Klinikum Nürnberg wird dieses innovative Verfahren für die Behandlung des Grünen Stars erforscht. Das Forschungsprojekt wird von der STAEDTLER-Stiftung mit 40.000 Euro gefördert.

Das Glaukom, bekannt als ‚Grüner Star‘, ist eine der weltweit häufigsten Ursachen für eine Erblindung. Das Forschungsprojekt der TH Nürnberg „Iridotomie mit Ultrakurzpulslasern zur Behandlung des Engwinkelglaukoms“ zielt auf eine Optimierung der bisher üblichen Behandlungstechnik.

Die Verwendung eines neuartigen Ultrakurzpulslasers soll eine präzisere und gleichzeitig kostengünstige Operationstechnik im Vergleich zu etablierten Verfahren ermöglichen. In Kooperation mit der Klinik für Augenheilkunde am Klinikum Nürnberg, Universitätsklinikum der Paracelsus Medizinischen Privatuniversität, will die TH Nürnberg mit diesem neuen Ansatz zur Entwicklung einer verbesserten Behandlungsmethode des Grünen Stars beitragen.

Im gesunden Auge findet ein Kammerwasserabfluss von der hinteren zur vorderen Augenkammer statt. Ist dieser gestört, steigt der Innendruck im Auge an und kann zu Schädigungen des Sehnervs, schlimmstenfalls sogar binnen kurzer Zeit zur Erblindung führen.

Die Standard-Behandlungsmethode dieser Erkrankung ist die sogenannte ‚Iridotomie‘. Mit der lasertechnischen oder mechanischen Durchbohrung der Iris wird der krankheitsbedingt eingeschränkte Flüssigkeitsabfluss wieder geöffnet. Im Erfolgsfall sinkt der Augeninnendruck. So kann eine fortschreitende Beeinträchtigung des Sehnervs vermieden werden.

Die bislang zur Iridotomie eingesetzten Nd:YAG-Laser arbeiten mit typischen Pulsdauern von einigen hundert Nanosekunden und Pulsenergien von einigen Millijoule. Die dadurch entstehende photomechanische Disruption der Iris hat einen Durchmesser von mehreren hundert Mikrometern.

Damit ist die Öffnung wesentlich größer als der Strahldurchmesser des Laserlichts und häufig am Rand unregelmäßig ausgefranst. In ungünstigen Fällen kann die Öffnung als zweite Pupille wirken und optische Artefakte wie Doppel- oder Schattenbilder verursachen.

Eine Verbesserung verspricht die Strahlquelle, die das Laserlabor der TH Nürnberg einsetzen wird. Der gütegeschaltete Mikrokristalllaser ermöglicht wesentlich kürzere Pulsdauern unterhalb von 20 Pikosekunden, die bislang nur mit erheblich aufwändigeren modengekoppelten Lasern erreicht wurden. Dadurch sinkt die Pulsenergie bei gleicher Intensität des Laserlichts auf einen Bruchteil der bisherigen Werte.

„Das Ziel ist, unerwünschte Ausfransungen der Abflussöffnung zu vermeiden und die Größe der Öffnung auf das unbedingt erforderliche Maß zu reduzieren“, erläutert Prof. Dr. Manfred Kottcke von der TH Nürnberg. „Durch die Verwendung ultrakurzer Pulse und die damit verbundene hohe Intensität der Laserstrahlung ist außerdem eine einfache Anpassung der benötigten Bestrahldauer an die Augenfarbe zu erwarten, die im Idealfall für jeden Patienten exakt berechnet werden kann.“

Der neu entwickelte Ultrakurzpulslaser der TH Nürnberg ist deutlich kostengünstiger als die Ultrakurzpulsstrahlquellen, die bisher in der Augenheilkunde eingesetzt werden. Dies soll einen weit verbreiteten Einsatz ermöglichen - ein Erfolg im internationalen Forschungstransfer für die TH Nürnberg.

Das Forschungsteam testet und beurteilt in Kooperation mit der Klinik für Augenheilkunde am Klinikum Nürnberg die Einsatzbereiche der neuentwickelten Ultrakurzpulslaser bei Glaukom-Behandlungen. Projektpartner ist die Klinik für Augenheilkunde am Klinikum Nürnberg, die die Proben charakterisiert und medizinisch beurteilt. Prof. Dr. Josef Schmidbauer, Chefarzt der Augenklinik, hat erste Pilotversuche bereits als äußerst vielversprechend eingeschätzt.

Das Forschungsprojekt wird von der STAEDTLER-Stiftung mit 40.000 Euro gefördert.

Kontakt:
Hochschulkommunikation, Tel. 0911/5880-4101, E-Mail: presse@th-nuernberg.de

Astrid Gerner | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.th-nuernberg.de
https://idw-online.de/de/news681096

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Schonend, schnell und präzise: Innovative Herz-Bildgebung in Freiburg
18.07.2018 | Universitätsklinikum Freiburg

nachricht Grünen Star effektiv therapieren: Wächter über den Augeninnendruck
02.07.2018 | Fraunhofer Institute for Microelectronic Circuits and Systems IMS

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vernetzte Beleuchtung: Weg mit dem blinden Fleck

18.07.2018 | Energie und Elektrotechnik

BIAS erhält Bremens größten 3D-Drucker für metallische Luffahrtkomponenten

18.07.2018 | Verfahrenstechnologie

Verminderte Hirnleistung bei schwachem Herz

18.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics